Skip to main content

Hypersurfaces in Warped Products

  • Chapter
  • First Online:
Maximum Principles and Geometric Applications

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2029 Accesses

Abstract

A classical result of Alexandrov [10] states that a compact hypersurface with constant mean curvature embedded in Euclidean space must be a round sphere. The original proof is based on a clever use of the maximum principle for elliptic partial differential equations. This method, now called the Alexandrov’s reflexion method, also works for hypersurfaces in ambient spaces having a sufficiently large number of isometric reflexions, for instance in the hyperbolic space. It is worth to observe that, in an analytical context, this is the root of what has been called the “moving plane” technique, initiated by the pioneering work of Serrin, [254], and over and over successfully applied to prove special symmetries of solutions to certain PDE’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.D. Alexandrov, A characteristic property of spheres. Ann. Mat. Pura Appl. (4) 58, 303–315 (1962)

    Google Scholar 

  2. L.J. Alías, M. Dajczer, Uniqueness of constant mean curvature surfaces properly immersed in a slab. Comment. Math. Helv. 81(3), 653–663 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. L.J. Alías, M. Dajczer, Constant mean curvature hypersurfaces in warped product spaces. Proc. Edinb. Math. Soc. (2) 50(3), 511–526 (2007)

    Google Scholar 

  4. L.J. Alías, M. Dajczer, Normal geodesic graphs of constant mean curvature. J. Differ. Geom. 75(3), 387–401 (2007)

    MATH  Google Scholar 

  5. L.J. Alías, J.H.S. de Lira, M. Rigoli, Geometric elliptic functionals and mean curvature. Ann. Sc. Norm. Super. Pisa Cl. Sci. To appear in Vol. XV (2016). Submitted: 2013-07-30 Accepted: 2014-07-09 pp. 44 DOI Number: 10.2422/2036-2145.201308_003

  6. L.J. Alías, D. Impera, M. Rigoli, Hypersurfaces of constant higher order mean curvature in warped products. Trans. Am. Math. Soc. 365(2), 591–621 (2013)

    Article  MATH  Google Scholar 

  7. X. Cheng, H. Rosenberg, Embedded positive constant r-mean curvature hypersurfaces in M m ×R. An. Acad. Brasil. Ciênc. 77(2), 183–199 (2005)

    MathSciNet  MATH  Google Scholar 

  8. M. Dajczer, P.A. Hinojosa, J.H.S. de Lira, Killing graphs with prescribed mean curvature. Calc. Var. Partial Differ. Equ. 33(2), 231–248 (2008)

    Article  MATH  Google Scholar 

  9. S.C. García-Martínez, D. Impera, M. Rigoli, A sharp height estimate for compact hypersurfaces with constant k-mean curvature in warped product spaces. Proc. Edinb. Math. Soc. (2) 58(2), 403–419 (2015)

    Google Scholar 

  10. D. Hoffman, J.H.S. de Lira, H. Rosenberg, Constant mean curvature surfaces in M 2 ×R. Trans. Am. Math. Soc. 358(2), 491–507 (2006)

    Article  MATH  Google Scholar 

  11. S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48(2), 711–748 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Montiel, A. Ros, Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures, in Differential Geometry. Pitman Monographs & Surveys in Pure & Applied Mathematics, vol. 52 (Longman Scientific & Technical, Harlow, 1991), pp. 279–296

    Google Scholar 

  13. S. Pigola, M. Rigoli, A.G. Setti, A remark on the maximum principle and stochastic completeness. Proc. Am. Math. Soc. 131(4), 1283–1288 (2003) (electronic)

    Google Scholar 

  14. S. Pigola, M. Rigoli, A.G. Setti, A Liouville-type result for quasi-linear elliptic equations on complete Riemannian manifolds. J. Funct. Anal. 219(2), 400–432 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Serrin, A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alías, L.J., Mastrolia, P., Rigoli, M. (2016). Hypersurfaces in Warped Products. In: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-24337-5_7

Download citation

Publish with us

Policies and ethics