Skip to main content

A Crash Course in Riemannian Geometry

  • Chapter
  • First Online:

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

This chapter is devoted to a quick review of some results in Riemannian geometry using the moving frame formalism. While we assume basic knowledge of the general subject as presented, for instance, in the standard references [51, 121, 156, 170, 171, 219, 272], several computations will be carried out in full detail in order to acquaint the reader with notation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.L. Besse, Einstein Manifolds. Classics in Mathematics (Springer, Berlin, 2008). Reprint of the 1987 edition

    Google Scholar 

  2. B. Bianchini, L. Mari, M. Rigoli, On some aspects of oscillation theory and geometry. Mem. Am. Math. Soc. 225(1056), vi + 195 (2013)

    Google Scholar 

  3. R.L. Bishop, Decomposition of cut loci. Proc. Am. Math. Soc. 65(1), 133–136 (1977)

    Article  MATH  Google Scholar 

  4. W.M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry. Pure and Applied Mathematics, vol. 120, 2nd edn. (Academic, Orlando, FL, 1986)

    Google Scholar 

  5. G. Catino, P. Mastrolia, D.D. Monticelli, M. Rigoli. Conformal Ricci solitons and related integrability conditions. Adv. Geom. (2016, to appear)

    Google Scholar 

  6. I. Chavel, Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, vol. 115 (Academic, Orlando, FL, 1984). Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk

    Google Scholar 

  7. J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17(1), 15–53 (1982)

    MathSciNet  MATH  Google Scholar 

  8. M.P. do Carmo, Riemannian Geometry. Mathematics: Theory & Applications (Birkhäuser Boston, Boston, MA, 1992). Translated from the second Portuguese edition by Francis Flaherty

    Google Scholar 

  9. J. Eells, L. Lemaire, Selected Topics in Harmonic Maps, CBMS Regional Conference Series in Mathematics, vol. 50 (Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1983)

    Book  Google Scholar 

  10. L.P. Eisenhart, Riemannian Geometry. Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 1997). Eighth Printing, Princeton Paperbacks

    Google Scholar 

  11. J.-H. Eschenburg, E. Heintze, Comparison theory for Riccati equations. Manuscripta Math. 68(2), 209–214 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Federer, Geometric measure theory, in Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer, New York, 1969)

    Google Scholar 

  13. S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry. Universitext, 3rd edn. (Springer, Berlin, 2004)

    Google Scholar 

  14. S.I. Goldberg, Curvature and Homology (Dover Publications, Mineola, NY, 1998). Revised reprint of the 1970 edition.

    Google Scholar 

  15. R.E. Greene, H. Wu, Function Theory on Manifolds Which Possess a Pole. Lecture Notes in Mathematics, vol. 699 (Springer, Berlin, 1979)

    Google Scholar 

  16. G. Huisken, Ricci deformation of the metric on a Riemannian manifold. J. Differ. Geom. 21(1), 47–62 (1985)

    MathSciNet  MATH  Google Scholar 

  17. J. Jost, Riemannian Geometry and Geometric Analysis. Universitext, 6th edn. (Springer, Heidelberg, 2011)

    Google Scholar 

  18. A. Korn, Zwei anwendungen der methode der sukzessiven annäherungen, in Mathematische Abhandlungen Hermann Amandus Schwarz, ed. by C. Carathéodory, G. Hessenberg, E. Landau, L. Lichtenstein (Springer, Berlin, Heidelberg, 1914), pp. 215–229

    Chapter  Google Scholar 

  19. J.M. Lee. Riemannian Manifolds. Graduate Texts in Mathematics, vol. 176 (Springer, New York, 1997). An introduction to curvature

    Google Scholar 

  20. J.M. Lee, Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218, 2nd edn. (Springer, New York, 2013)

    Google Scholar 

  21. A. Lichnerowicz, Géométrie des groupes de transformations Travaux et Recherches Mathmatiques, III (Dunod, Paris, 1958) ix+193 pp

    Google Scholar 

  22. L. Mari, M. Rigoli, A.G. Setti, Keller-Osserman conditions for diffusion-type operators on Riemannian manifolds. J. Funct. Anal. 258(2), 665–712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48(2), 711–748 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Osserman, A Survey of Minimal Surfaces, 2nd edn. (Dover Publications, New York, 1986)

    Google Scholar 

  25. P. Petersen, Riemannian Geometry. Graduate Texts in Mathematics, vol. 171, 2nd edn. (Springer, New York, 2006)

    Google Scholar 

  26. W.A. Poor, Differential Geometric Structures (McGraw-Hill Book, New York, 1981)

    MATH  Google Scholar 

  27. R. Schoen, S.-T. Yau, Lectures on Differential Geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, I (International Press, Cambridge, MA, 1994). Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, Translated from the Chinese by Ding and S. Y. Cheng, Preface translated from the Chinese by Kaising Tso

    Google Scholar 

  28. R.W. Sharpe, Differential Geometry. Graduate Texts in Mathematics, vol. 166 (Springer, New York, 1997). Cartan’s generalization of Klein’s Erlangen program, With a foreword by S.S. Chern

    Google Scholar 

  29. Y. Tashiro, Complete Riemannian manifolds and some vector fields. Trans. Am. Math. Soc. 117, 251–275 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in Mathematics, vol. 94 (Springer, New York, Berlin, 1983). Corrected reprint of the 1971 edition

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alías, L.J., Mastrolia, P., Rigoli, M. (2016). A Crash Course in Riemannian Geometry. In: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-24337-5_1

Download citation

Publish with us

Policies and ethics