Skip to main content

Parametric polyhedra with at least k lattice points: Their semigroup structure and the k-Frobenius problem

  • Chapter
  • First Online:
Recent Trends in Combinatorics

Abstract

Given an integral d × n matrix A, the well-studied affine semigroup \(\mathrm{Sg}(A) =\{ b: Ax = b,\ x \in \mathbb{Z}^{n},x \geq 0\}\) can be stratified by the number of lattice points inside the parametric polyhedra P A (b) = { x: Ax = b, x ≥ 0}. Such families of parametric polyhedra appear in many areas of combinatorics, convex geometry, algebra, and number theory. The key themes of this paper are: (1) A structure theory that characterizes precisely the subset Sg ≥ k (A) of all vectors \(b \in \mathrm{Sg}(A)\) such that \(P_{A}(b) \cap \mathbb{Z}^{n}\) has at least k solutions. We demonstrate that this set is finitely generated, it is a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computations. Related results can be derived for those right-hand-side vectors b for which \(P_{A}(b) \cap \mathbb{Z}^{n}\) has exactly k solutions or fewer than k solutions. (2) A computational complexity theory. We show that, when n, k are fixed natural numbers, one can compute in polynomial time an encoding of \(\mathrm{Sg}_{\geq k}(A)\) as a multivariate generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors of bounded norm that have at least k solutions. (3) Applications and computation for the k-Frobenius numbers. Using generating functions we prove that for fixed n, k the k-Frobenius number can be computed in polynomial time. This generalizes a well-known result for k = 1 by R. Kannan. Using some adaptation of dynamic programming we show some practical computations of k-Frobenius numbers and their relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Aardal, A.K. Lenstra, Hard equality constrained integer knapsacks, in Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science (Springer, Berlin, 2002), pp. 350–366

    Google Scholar 

  2. D. Adjiashvili, T. Oertel, R. Weismantel, A polyhedral Frobenius theorem with applications to integer optimization. SIAM J. Discret. Math (to appear)

    Google Scholar 

  3. I. Aliev, M. Henk, Feasibility of integer knapsacks. SIAM J. Optim. 20, 2978–2993 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Aliev, M. Henk, A. Hinrichs, Expected Frobenius numbers. J. Comb. Theory A 118, 525–531 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Aliev, L. Fukshansky, M. Henk, Generalized Frobenius numbers: bounds and average behavior. Acta Arith. 155, 53–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Aliev, M. Henk, E. Linke, Integer points in knapsack polytopes and s-covering radius. Electron. J. Comb. 20(2), Paper 42, 17 pp. (2013)

    Google Scholar 

  7. I. Aliev, J.A. De Loera, Q. Louveaux, Integer programs with prescribed number of solutions and a weighted version of Doignon-Bell-Scarf’s theorem, in Proceedings of IPCO 17th Bonn, ed. by J. Lee, J. Vygens (2014), pp. 37–51

    Google Scholar 

  8. V.I. Arnol’d, Statistics of integral convex polygons. Funktsional. Anal. i Prilozhen 14(2), 1–3 (1980)

    MathSciNet  MATH  Google Scholar 

  9. G. Averkov, C. Wagner, R. Weismantel, Maximal lattice-free polyhedra: finiteness and an explicit description in dimension three. Math. Oper. Res. 36(4), 721–742 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Baldoni, M. Beck, C. Cochet, M. Vergne, Volume computation for polytopes and partition functions for classical root systems. Discret. Comput. Geom. 35(4), 551–595 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Bárány, A.M. Vershik, On the number of convex lattice polytopes, Geom. Funct. Anal. 2(4), 381–393 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Barucci, Numerical semigroup algebras, in Multiplicative ideal theory in commutative algebra, ed. by J.W. Brewer, S. Glaz, H. Heinzer, B. Olberding (Springer, Berlin, 2006), pp. 39–53

    Chapter  Google Scholar 

  13. A.I. Barvinok, Polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19, 769–779 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. A.I. Barvinok, A Course in Convexity. Graduate studies in Mathematics, vol. 54 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  15. A.I. Barvinok, Integer Points in Polyhedra. Zürich Lectures in Advanced Mathematics (European Mathematical Society (EMS), Zürich, 2008)

    Google Scholar 

  16. A.I. Barvinok, J. Pommersheim, An algorithmic theory of lattice points in polyhedra, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–1997), vol. 38 (Mathematical Sciences Research Institute Publications/Cambridge University Press, Cambridge, 1999), pp. 91–147

    MATH  Google Scholar 

  17. A.I. Barvinok, K. Woods, Short rational generating functions for lattice point problems. J. Am. Math. Soc. 16, 957–979 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Beck, S. Robins, A formula related to the Frobenius problem in two dimensions. Number theory (New York, 2003) (Springer, New York, 2004), pp. 17–23

    Google Scholar 

  19. M. Beck, C. Kifer, An extreme family of generalized Frobenius numbers. Integers 11, 6 p. (2011)

    Google Scholar 

  20. D. Beihoffer, J. Hendry, A. Nijenhuis, S. Wagon, Faster algorithms for Frobenius numbers. Electron. J. Comb. 12, Research paper #R27 (2005)

    Google Scholar 

  21. B. Braun, Unimodality Problems in Ehrhart Theory. article in this volume

    Google Scholar 

  22. M. Brion, M. Vergne, Residue formulae, vector partition functions and lattice points in rational polytopes. J. Am. Math. Soc. 10(4), 797–833 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Brown, E. Dannenberg, J. Fox, J. Hanna, K. Keck, A. Moore, Z. Robbins, B. Samples, J. Stankewicz, On a generalization of the Frobenius number. J. Integer Seq. 13(1), Article 10.1.4, 6 p. (2010)

    Google Scholar 

  24. W. Bruns, R. Koch, NORMALIZ, computing normalizations of affine semigroups. Available from ftp://ftp.mathematik.uni-osnabrueck.de/pub/osm/kommalg/software/

  25. W. Bruns, J. Gubeladze, N.V. Trung, Problems and algorithms for affine semigroups. Semigroup Forum 64, 180–212 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Bowles, S.T. Chapman, N. Kaplan, D. Reiser, On delta sets of numerical monoids. J. Algebra Appl. 5, 1–24 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Castryck, Moving out the edges of a lattice polygon. Discret. Comput. Geom. 47(3), 496–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. S.T. Chapman, M.T. Holden, T.A. Moore, Full elasticity in atomic monoids and integral domains. Rocky Mt. J. Math. 36, 1437–1455 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. S.T. Chapman, P.A. García-Sánchez, D. Llena, The catenary and tame degree of numerical semigroups. Forum Math. 21, 117–129 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. C. De Concini, C. Procesi, M. Vergne, Partition function and generalized Dahmen-Micchelli spaces. Transform. Groups 15(4), 751–773 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Cox, J. Little, D. O’Shea, Ideals, Varieties and Algorithms (Springer, New York, 1992)

    Book  MATH  Google Scholar 

  32. A. Dobra, A.F. Karr, P.A. Sanil, Preserving confidentiality of high-dimensional tabulated data: statistical and computational issues. Stat. Comput. 13, 363–370 (2003)

    Article  MathSciNet  Google Scholar 

  33. D. Einstein, D. Lichtblau, A. Strzebonski, S. Wagon, Frobenius numbers by lattice point enumeration. Integers 7, A15, 63 (2007)

    Google Scholar 

  34. F. Eisenbrand, N. Hähnle, Minimizing the number of lattice points in a translated polygon, in Proceedings of SODA (2013), pp. 1123–1130

    Google Scholar 

  35. E. Ehrhart, Polynômes arithmétiques et méthode des polyèdres en combinatoire. International Series of Numerical Mathematics, vol. 35 (Birkhäuser, Basel, 1977)

    Google Scholar 

  36. L. Fukshansky, A. Schürmann, Bounds on generalized Frobenius numbers. Eur. J. Comb. 3, 361–368 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. P.A. García-Sánchez, J.C. Rosales, Numerical Semigroups. Developments in Mathematics, vol. 20 (Springer, New York, 2009)

    Google Scholar 

  38. C. Haase, B. Nill, S. Payne, Cayley decompositions of lattice polytopes and upper bounds for h -polynomials. J. Reine Angew. Math. 637, 207–216 (2009)

    MathSciNet  MATH  Google Scholar 

  39. R. Hemmecke, A. Takemura, R. Yoshida, Computing holes in semi-groups and its application to transportation problems. Contrib. Discret. Math. 4, 81–91 (2009)

    MathSciNet  MATH  Google Scholar 

  40. M. Henk, R. Weismantel, On Hilbert Bases of Polyhedral Cones, Preprint SC 96-12. Konrad-Zuse-Zentrum für Informationstechnik, Berlin, April 1996. www.zib.de/bib/pub/pw/index.en.html

    Google Scholar 

  41. R. Kannan, Lattice translates of a polytope and the Frobenius problem. Combinatorica 12, 161–177 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems (Springer, Berlin, 2004)

    Book  MATH  Google Scholar 

  43. A.G. Khovanskii, The Newton polytope, the Hilbert polynomial and sums of finite sets. Funktsional. Anal. i Prilozhen. 26, 57–63 (1992)

    Article  MathSciNet  Google Scholar 

  44. A. Knutson, T. Tao, The honeycomb model of \(\mathrm{GL}_{n}(\mathbf{C})\) tensor products. I. Proof of the saturation conjecture. J. Am. Math. Soc. 12(4), 1055–1090 (1999)

    MathSciNet  MATH  Google Scholar 

  45. J.C. Lagarias, G.M. Ziegler, Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Can. J. Math. 43, 1022–1035 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. H. Liu, C. Zong, On the classification of convex lattice polytopes. Adv. Geom. 11(4), 711–729 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. J.A. De Loera, T.B. McAllister, On the computation of Clebsch-Gordan coefficients and the dilation effect. Exp. Math. 15(1), 7–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. J.A. De Loera, D.C. Haws, R. Hemmecke, P. Huggins, B. Sturmfels, R. Yoshida, Short rational functions for toric algebra and applications. J. Symb. Comput. 38, 959–973 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.A. De Loera, J. Rambau, F. Santos, Triangulations: Structures for Algorithms and Applications. Algorithms and Computation in Mathematics Series, vol. 25 (Springer, Berlin, 2010), 539 p. ISBN: 978-3-642-12970-4

    Google Scholar 

  50. J.A. De Loera, R. Hemmecke, M. Köppe, Algebraic and Geometric Ideas in the Theory of Discrete Optimization. MOS-SIAM Series on Optimization, vol. 14 (Society for Industrial and Applied Mathematics (SIAM)/Mathematical Optimization Society, Philadelphia, 2013), xx+322 pp.

    Google Scholar 

  51. B. Nill, Lattice polytopes having h -polynomials with given degree and linear coefficient. Eur. J. Comb. 29, 1596–1602 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. B. Nill, G.M. Ziegler, Projecting lattice polytopes without interior lattice points. Math. Oper. Res. 36(3), 462–467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. C. O’Neil, On factorization invariants and Hilbert functions. Preprint available as ArXiv:1503.08351 (2014)

    Google Scholar 

  54. I. Pak, E. Vallejo, Combinatorics and geometry of Littlewood-Richardson cones. Eur. J. Comb. 26, 995–1008 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. O. Pikhurko, Lattice points in lattice polytopes. Mathematika 48(1–2), 15–24 (2001/2003)

    Google Scholar 

  56. S. Rabinowitz, A census of convex lattice polygons with at most one interior lattice point. Ars Comb. 28, 83–96 (1989)

    MathSciNet  MATH  Google Scholar 

  57. J.L. Ramírez Alfonsín, Complexity of the Frobenius problem. Combinatorica 16, 143–147 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  58. J.L. Ramírez Alfonsín, The Diophantine Frobenius Problem. Oxford Lecture Series in Mathematics and Its Applications (Oxford University Press, New York, 2006)

    Google Scholar 

  59. J.L. Ramírez Alfonsín, Gaps in semigroups. Discret. Math., 308, 4177–4184 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. J.R. Schmidt, A. Bincer, The Kostant partition function for simple Lie algebras. J. Math. Phys. 25, 2367–2373 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Schrijver, Theory of Linear and Integer Programming (Wiley, Chichester, 1998)

    MATH  Google Scholar 

  62. J. Shallit, J. Stankewicz, Unbounded discrepancy in Frobenius numbers. Integers 11, 27–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. R.P. Stanley, Combinatorics and Commutative Algebra. Progress in Mathematics, vol. 41, 2nd edn. (Birkhäuser, Boston, 1996)

    Google Scholar 

  64. B. Sturmfels, Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8 (American Mathematical Society, Providence, 1995)

    Google Scholar 

  65. B. Sturmfels, On vector partition functions. J. Comb. Theory A 72, 302–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  66. A. Szenes, M. Vergne, Residue formulae for vector partitions and Euler-MacLaurin sums. Adv. Appl. Math. 30, 295–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  67. A. Takemura, R. Yoshida, A generalization of the integer linear infeasibility problem. Discret. Optim. 5, 36–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. A.V. Ustinov, Solution of the Arnold problem on weak asymptotics for Frobenius numbers with three arguments. Sb. Math. 200, 597–627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  69. X. Wei, R. Ding, Lattice polygons with two interior lattice points. Math. Notes 91(5–6), 868–877 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are truly grateful to Lenny Fukshansky, Martin Henk, and Matthias Köppe for their comments, encouragement, and corrections that improve the paper we present today. The second author is grateful for partial support through an NSA grant. Some of our results were first announced in [7].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús A. De Loera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aliev, I., De Loera, J.A., Louveaux, Q. (2016). Parametric polyhedra with at least k lattice points: Their semigroup structure and the k-Frobenius problem. In: Beveridge, A., Griggs, J., Hogben, L., Musiker, G., Tetali, P. (eds) Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-24298-9_29

Download citation

Publish with us

Policies and ethics