Skip to main content

The combinatorics of knot invariants arising from the study of Macdonald polynomials

  • Chapter
  • First Online:

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 159))

Abstract

This chapter gives an expository account of some unexpected connections which have arisen over the last few years between Macdonald polynomials, invariants of torus knots, and lattice path combinatorics. The study of polynomial knot invariants is a well-known branch of topology which originated in the 1920s with the one-parameter Alexander polynomial [1]. In the early 1980s Jones [41] introduced a different one-parameter polynomial invariant, with important connections to physics. Shortly thereafter a number of authors more or less simultaneously discovered the HOMFLY polynomial, a two-parameter invariant which includes both the Alexander and Jones polynomials as special cases. The HOMFLY polynomial can be calculated recursively through skein relations. In the late 1980s Witten showed that the Jones polynomial and related invariants have an interpretation in terms of Chern–Simons theory, which is central to string theory. In 2006 Dunfield, Gukov, and Rasmussen [14] hypothesized the existence of a three-parameter knot invariant, now known as the “superpolynomial knot invariant” of a knot K, denoted \(\mathcal{P}_{K}(a,q,t)\), which includes the HOMFLY polynomial as a special case. Since then various authors proposed different possible definitions of the superpolynomial, which are conjecturally all equivalent. These definitions typically involve homology though, and are difficult to compute. In the case of torus knots an accepted definition of the superpolynomial has recently emerged from work of Aganagic and Shakirov [6, 7] (using refined Chern–Simons theory) and Cherednik [12] (using the double affine Hecke algebra). Gorsky and Negut [24] showed that these two different constructions yield the same three-parameter knot invariant which is now accepted as the definition of the superpolynomial for torus knots. These constructions involve symmetric functions in a set of variables X known as Macdonald polynomials, which also depend on two extra parameters q, t. These symmetric functions are important in algebraic combinatorics and other areas, and play a central role in various character formulas for S n modules connected to the Hilbert scheme from algebraic geometry. In particular, Haiman’s formula for the bigraded character of the space DH n of diagonal harmonics under the diagonal action of the symmetric group is expressed in terms of Macdonald polynomials. E. Gorsky [22], [47, Appendix] noticed that the coefficient of a j in the superpolynomial of the (n + 1, n) torus knot equals the bigraded multiplicity of a certain hook shape in the character of DH n . This polynomial is known as the (q, t)-Schröder polynomial since the author showed it can be expressed as a weighted sum over Schröder lattice paths in the n × n + 1 rectangle. Gorsky and Negut have shown that the coefficient of a j in the superpolynomial of the (m, n) torus knot can be viewed as the coefficient of a certain hook Schur function in a symmetric function expression involving Macdonald polynomials, and they have derived many explicit identities for this object. In addition Oblomkov, Rasmussen, and Shende [47] have introduced a conjectured extension of the q, t-Schröder polynomial to general (m, n) giving a positive strictly combinatorial expression for the superpolynomial of the (m, n) torus knot. This conjecture connects nicely with an important conjecture in algebraic combinatorics called the rational shuffle conjecture. In the following pages we will describe these developments in more detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.W. Alexander, Topological invariants of knots and links. Trans. Am. Math. Soc. 30(2), 275–306 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Armstrong, Rational Catalan combinatorics 1. Slides from a talk at the JMM 2012 meetings (2012)

    Google Scholar 

  3. D. Armstrong, A. Garsia, J. Haglund, B. Sagan, B. Rhoades, Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics. J. Comb. 3, 451–494 (2012)

    MathSciNet  MATH  Google Scholar 

  4. D. Armstrong, C.R.H. Hanusa, B.C. Jones, Results and conjectures on simultaneous core partitions. Eur. J. Comb. 41, 205–220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Armstrong, N. Loehr, G. Warrington, Rational parking functions and Catalan numbers (2014). Preprint on the math arXiv:1403.1845

    Google Scholar 

  6. M. Aganagic, S. Shakirov, Knot homology from refined Chern-Simons theory (2011). Preprint on the math arXiv:1105.5117

    Google Scholar 

  7. M. Aganagic, S. Shakirov, Refined Chern-Simons theory and knot homology, in String-Math 2011. Proceedings of Symposia in Pure Mathematics, vol. 85 (American Mathematical Society, Providence, 2012), pp. 3–31

    Google Scholar 

  8. F. Bergeron, A.M. Garsia, E. Leven, G. Xin, Compositional (km, kn)-shuffle conjectures (2014). Preprint on the math arXiv:1404.4616

    Google Scholar 

  9. F. Bergeron, A.M. Garsia, E. Leven, G. Xin, Some remakable new plethystic operators in the thoery of Macdonald polynomials (2014). Preprint on the math arXiv:1405.0316

    Google Scholar 

  10. I. Burban, O. Schiffmann, On the Hall algebra of an elliptic curve, I. Duke Math. J. 161(7), 1171–1231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Carlsson, A. Mellit, A proof of the shuffle conjecture. arXiv:1508.06239 (2015)

    Google Scholar 

  12. I. Cherednik, Jones polynomials of torus knots via DAHA. Int. Math. Res. Not. 2013(23), 5366–5425 (2013)

    MathSciNet  MATH  Google Scholar 

  13. J.H. Conway, An enumeration of knots and links, and some of their algebraic properties, in Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) (Pergamon, Oxford, 1970), pp. 329–358

    Google Scholar 

  14. N.M. Dunfield, S. Gukov, J. Rasmussen, The superpolynomial for knot homologies. Exp. Math. 15(2), 129–159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links. Bull. Am. Math. Soc. (N.S.) 12(2), 239–246 (1985)

    Google Scholar 

  16. A.M. Garsia, M. Haiman, A graded representation model for Macdonald polynomials. Proc. Nat. Acad. Sci. U.S.A. 90(8), 3607–3610 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. A.M. Garsia, M. Haiman, A remarkable q, t-Catalan sequence and q-Lagrange inversion. J. Algebraic Comb. 5(3), 191–244 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. A.M. Garsia, J. Haglund, A positivity result in the theory of Macdonald polynomials. Proc. Nat. Acad. Sci. U.S.A. 98, 4313–4316 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. A.M. Garsia, J. Haglund, A proof of the q, t-Catalan positivity conjecture. Discret. Math. 256, 677–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. A.M. Garsia, J. Haglund, G. Xin, Constant term methods in the theory of Tesler matrices and Macdonald polynomial operators. Ann. Comb. 18, 83–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Garsia, E. Leven, N. Wallach, G. Xin, A new plethystic symmetric function operator and the rational compositional shuffle conjecture at t = 1∕q (2015). Preprint on the math arXiv: http://arxiv.org/pdf/1501.00631

  22. E. Gorsky, Private communication (2012)

    Google Scholar 

  23. E. Gorsky, M. Mazin, Rational parking functions and LLT polynomials (2015). Preprint on the math arXiv:1503.04181

    Google Scholar 

  24. E. Gorsky, A. Negut, Refined knot invariants and Hilbert schemes (2013). Preprint on the math arXiv: http://arxiv.org/pdf/1304.3328

  25. E. Gorsky, M. Mazin, M. Vazirani, Affine permutations and rational slope parking functions (2014). Preprint on the math arXiv:1403.0303

    Google Scholar 

  26. E. Gorsky, A. Oblomkov, J. Rasmussen, V. Shende, Torus knots and the rational DAHA. Duke Math. J. 163(14), 2709–2794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. I. Gordon, J.T. Stafford, Rational Cherednik algebras and Hilbert schemes. Adv. Math. 198(1), 222–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Gordon, J.T. Stafford, Rational Cherednik algebras and Hilbert schemes. II. Representations and sheaves. Duke Math. J. 132(1), 73–135 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Haglund, A proof of the q, t-Schröder conjecture. Int. Math. Res. Not. 11, 525–560 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Haglund, The q,t-Catalan Numbers and the Space of Diagonal Harmonics. University Lecture Series, vol. 41 (American Mathematical Society, Providence, 2008). With an appendix on the combinatorics of Macdonald polynomials

    Google Scholar 

  31. J. Haglund, A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants. Adv. Math. 227, 2092–2106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Haglund, M. Haiman, N. Loehr, A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc. 18, 735–761 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Haglund, M. Haiman, N. Loehr, Combinatorial theory of Macdonald polynomials I: Proof of Haglund’s formula. Proc. Nat. Acad. Sci. U.S.A. 102(8), 2690–2696 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Haglund, M. Haiman, N. Loehr, J.B. Remmel, A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126, 195–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Haglund, J. Morse, M. Zabrocki, A compositional shuffle conjecture specifying touch points of the Dyck path. Can. J. Math. 64, 822–844 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Haiman, Conjectures on the quotient ring by diagonal invariants. J. Algebraic Comb. 3, 17–76 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Haiman, Private communication (2000)

    Google Scholar 

  38. M. Haiman, Hilbert schemes, polygraphs, and the Macdonald positivity conjecture. J. Am. Math. Soc. 14, 941–1006 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane. Invent. Math. 149, 371–407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Hikita, Affine Springer fibers of type A and combinatorics of diagonal coinvariants. Adv. Math. 263, 88–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. V.F.R. Jones, A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. (N.S.) 12(1), 103–111 (1985)

    Google Scholar 

  42. N. Loehr, Multivariate analogues of Catalan numbers, parking functions, and their extensions. Ph.D. Thesis, University of California at San Diego, 2003

    Google Scholar 

  43. N.A. Loehr, Conjectured statistics for the higher q, t-Catalan sequences. Electron. J. Comb. 12(Research Paper 9), 54 pp. (electronic) (2005)

    Google Scholar 

  44. I.G. Macdonald, A new class of symmetric polynomials. Actes du 20e Séminaire Lotharingien. Publ. Inst. Rech. Math. Av. 372, 131–171 (1988)

    Google Scholar 

  45. I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Mathematical Monographs. Oxford Science Publications (The Clarendon Press/Oxford University Press, New York, 1995)

    MATH  Google Scholar 

  46. A, Negut, The shuffle algebra revisited. Int. Math. Res. Not. IMRN 2014(22), 6242–6275 (2014)

    Google Scholar 

  47. A. Oblomkov, J. Rasmussen, V. Shende, The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link (2012). Preprint on the math arXiv:1201.2115

    Google Scholar 

  48. O. Schiffmann, E. Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials. Compos. Math. 147(1), 188–234 (2011)

    MathSciNet  MATH  Google Scholar 

  49. O. Schiffmann, E, Vasserot, The elliptic Hall algebra and the K-theory of the Hilbert scheme of \(\mathbb{A}^{2}\). Duke Math. J. 162(2), 279–366 (2013)

    Article  MathSciNet  Google Scholar 

  50. Wikipedia, Knot theory. https://en.wikipedia.org/wiki/Knot_theory

  51. N. Williams, Sweeping up zeta. arXiv:1512.01483 (2015, Preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Haglund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haglund, J. (2016). The combinatorics of knot invariants arising from the study of Macdonald polynomials. In: Beveridge, A., Griggs, J., Hogben, L., Musiker, G., Tetali, P. (eds) Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-24298-9_23

Download citation

Publish with us

Policies and ethics