Skip to main content

The mathematics of causal sets

  • Chapter
  • First Online:
Recent Trends in Combinatorics

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 159))

Abstract

The causal set approach to quantum gravity is based on the hypothesis that the underlying structure of spacetime is that of a random partial order. We survey some of the interesting mathematics that has arisen in connection with the causal set hypothesis, and describe how the mathematical theory can be translated to the application area. We highlight a number of open problems of interest to those working in causal set theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Albert, A. Frieze, Random graph orders. Order 6, 19–30 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Aldous, P. Diaconis, Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson Theorem. Bull. Am. Math. Soc. 36, 413–432 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Alon, E.R. Scheinerman, Degrees of freedom versus dimension for containment orders. Order 5, 11–16 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Alon, B. Bollobás, G. Brightwell, S. Janson, Linear extensions of a random partial order. Ann. Appl. Probab. 4, 108–123 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Bachmat, Discrete space-time and its applications, in Random Matrices, Integrable Systems and Applications: A Conference in Honor of Percy Deift’s 60th Birthday, ed. by J. Baik, L-C. Li, T. Kriecherbauer, K. McLaughlin, C. Tomei. Contemporary Mathematics Book Series (American Mathematical Society, Providence, 2008)

    Google Scholar 

  6. J. Baik, P. Deift, K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119–1178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Barak, P. Erdős, On the maximal number of strongly independent vertices in a random acyclic directed graph. SIAM. J. Algebraic Discret. Methods. 5, 508–514 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Bollobás, G. Brightwell, Box-spaces and random partial orders. Trans. Am. Math. Soc. 324, 59–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Bollobás, G. Brightwell, The width of random graph orders. Math. Sci. 20, 69–90 (1995)

    MathSciNet  MATH  Google Scholar 

  10. B. Bollobás, G. Brightwell, The dimension of random graph orders, in The Mathematics of Paul Erdős II, ed. by R.L. Graham, J. Nešetřil (Springer, New York, 1996), pp. 51–69

    Google Scholar 

  11. B. Bollobás, G. Brightwell, The structure of random graph orders. SIAM J. Discret. Math. 10, 318–335 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Bollobás, P. Winkler, The longest chain among random points in Euclidean space. Proc. Am. Math. Soc. 103, 347–353 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Bombelli, Statistical Lorentzian geometry and the closeness of Lorentzian manifolds. J. Math. Phys. 41, 6944–6958 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Bombelli, D.A. Meyer, The origin of Lorentzian geometry. Phys. Lett. A 141, 226–228 (1989)

    Article  MathSciNet  Google Scholar 

  15. L. Bombelli, J. Lee, D. Meyer, R.D. Sorkin, Spacetime as a causal set. Phys. Rev. Lett. 59, 521–524 (1987)

    Article  MathSciNet  Google Scholar 

  16. G. Brightwell, Linear extensions of infinite posets. Discret. Math. 70, 113–136 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Brightwell, Models of random partial orders, in Surveys in Combinatorics 1993, ed. by K. Walker. London Mathematical Society Lecture Notes Series, vol. 187 (Cambridge University Press, Cambridge, 1993), pp. 53–83

    Google Scholar 

  18. G. Brightwell, N. Georgiou, Continuum limits for classical sequential growth models. Random Struct. Algorithm 36, 218–250 (2010)

    MathSciNet  MATH  Google Scholar 

  19. G. Brightwell, R. Gregory, The structure of random discrete spacetime. Phys. Rev. Lett. 66, 260–263 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Brightwell, M. Luczak, Order-invariant measures on causal sets. Ann. Appl. Probab. 21, 1493–1536 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Brightwell, M. Luczak, Order-invariant measures on fixed causal sets. Comb. Prob. Comput. 21, 330–357 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Brightwell, H.-J. Prömel, A. Steger, The average number of linear extensions of a partial order. J. Comb. Theory (A) 73, 193–206 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Brightwell, P. Winkler, Sphere orders. Order 6, 235–240 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Brightwell, H.F. Dowker, R.S. García, J. Henson, R.D. Sorkin, “Observables” in causal set cosmology. Phys. Rev. D 67, 084031 (2003)

    Article  MathSciNet  Google Scholar 

  25. G. Brightwell, J. Henson, S. Surya, A 2D model of causal set quantum gravity: the emergence of the continuum. Classical Quantum Gravity 25, 105025 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Dowker, Introduction to causal sets and their phenomenology. Gen. Relativ. Gravit. 45, 1651–1667 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Dowker, S. Surya, Observables in extended percolation models of causal set cosmology. Classical Quantum Gravity 23, 1381–1390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Dowker, J. Henson, R.D. Sorkin, Quantum gravity phenomenology, Lorentz invariance and discreteness. Mod. Phys. Lett. A19, 1829–1840 (2004)

    Article  MathSciNet  Google Scholar 

  29. M. El-Zahar, N. Sauer, Asymptotic enumeration of two-dimensional posets. Order 5, 239–244 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Felsner, P.C. Fishburn, W.T. Trotter, Finite three dimensional partial orders which are not sphere orders. Discret. Math. 201, 101–132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. H.-O. Georgii, Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics, vol. 9 (de Gruyter, Berlin, 1988)

    Google Scholar 

  32. N. Georgiou, The random binary growth model. Random Struct. Algorithm. 27, 520–552 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. S.W. Hawking, A.R. King, P.J. McCarthy, A new topology for curved spacetime which incorporates the causal, differential and conformal structures. J. Math. Phys. 17, 174–181 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Henson, The causal set approach to quantum gravity, in Approaches to Quantum Gravity: Towards a New Understanding of Space and Time, ed. by D. Oriti (Cambridge University Press, Cambridge, 2009), pp. 26–43

    Google Scholar 

  35. E. Hewitt, L.J. Savage, Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Hladký, A. Máthé, V. Patel, O. Pikhurko, Poset limits can be totally ordered. Trans. Am. Math. Soc. 367, 4319–4337 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Janson, Poset limits and exchangeable random posets. Combinatorica 31, 529–563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Kerov, The boundary of Young lattice and random Young tableaux, in Formal Power Series and Algebraic Combinatorics, ed. by L.J. Billera, C. Greene, R. Simion, R.P. Stanley. DIMACS Series, Discrete Mathematics and Theoretical Computer Science, vol. 24 (American Mathematical Society, Providence, 1996), pp. 133–158

    Google Scholar 

  39. J.H. Kim, B. Pittel, On tail distribution of interpost distance. J. Comb. Theor. B 80, 49–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. D. Kleitman, B. Rothschild, Asymptotic enumeration of partial orders on a finite set. Trans. Am. Math. Soc. 205, 205–220 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Malament, The class of continuous timelike curves determines the topology of spacetime. J. Math. Phys. 18, 1399–1404 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  42. D.A. Meyer, Spherical containment and the Minkowski dimension of partial orders. Order 10, 227–237 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Myrheim, Statistical geometry. CERN preprint TH-2538 (1978)

    Google Scholar 

  44. B. Pittel, R. Tungol, A phase transition phenomenon in a random directed acyclic graph. Random Struct. Algorithm 18, 164–184 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. H.J. Prömel, A. Steger, A. Taraz, Phase transitions in the evolution of partial orders. J. Comb. Theor. Ser. A 94, 230–275 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. H.J. Prömel, A. Steger, A. Taraz, Counting partial orders with a fixed number of comparable pairs. Comb. Probab. Comput. 10, 159–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. D. Rideout, R.D. Sorkin, A classical sequential growth dynamics for causal sets. Phys. Rev. D 61, 024002 (2000)

    Article  MathSciNet  Google Scholar 

  48. D. Rideout, R.D. Sorkin, Evidence for a continuum limit in causal set dynamics. Phys. Rev. D 63, 104011 (2001)

    Article  MathSciNet  Google Scholar 

  49. D. Rideout, P. Wallden, Spacelike distance from discrete causal order. Classical Quantum Gravity 26, 155013 (2009)

    Article  MATH  Google Scholar 

  50. K. Simon, D. Crippa, F. Collenberg, On the distribution of the transitive closure in a random acyclic digraph, in Algorithms ESA’93 (Bad Honnef 1993). Lecture Notes in Computer Science, vol. 726 (1993), pp. 345–356

    Google Scholar 

  51. R.D. Sorkin, Causal sets: discrete gravity (notes for the Valdivia summer school), in Proceedings of the Valdivia Summer School, Valdivia, Chile, January 2002 ed. by A. Gomberoff, D. Marolf. Lectures on Quantum Gravity (Plenum, New York, 2005)

    Google Scholar 

  52. S. Surya, Directions in causal set quantum gravity, in Recent Research in Quantum Gravity, ed. by A. Dasgupta (Nova Science Publishers, New York, 2012)

    Google Scholar 

  53. M. Varadarajan, D. Rideout, A general solution for classical sequential growth dynamics of causal sets. Phys. Rev. D 73, 104021 (2006)

    Article  MathSciNet  Google Scholar 

  54. P. Winkler, Random orders. Order 1, 317–335 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  55. P. Winkler, Random orders of dimension 2. Order 7, 329–339 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Malwina Luczak’s research was supported by an EPSRC Leadership Fellowship, grant reference EP/J004022/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Brightwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brightwell, G., Luczak, M. (2016). The mathematics of causal sets. In: Beveridge, A., Griggs, J., Hogben, L., Musiker, G., Tetali, P. (eds) Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-24298-9_15

Download citation

Publish with us

Policies and ethics