Skip to main content

Giant components in random graphs

  • Chapter
  • First Online:
  • 2260 Accesses

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 159))

Abstract

The phase transition in random graphs was first discussed by Erdős and Rényi who showed that a random graph undergoes a drastic change in the order and structure of the largest component. In view of recent results, one can recognise two main trends that have increased our understanding of random graphs. The first trend is the study of various random graph models (e.g. random hypergraphs, random graph processes, random graphs with degree constraints, random graphs on surfaces). The second trend is finding new simple proofs (and thereby improvement) of classical results on random graphs. This article discusses developments in random graphs in the light of these trends, with focus on giant components, limit theorems, and proof techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Alon, J. Spencer, The Probabilistic Method, 3rd edn. (Wiley, New York, 1992)

    MATH  Google Scholar 

  2. A. Barbour, M. Karoński, A. Ruciński, A central limit theorem for decomposable random variables with applications to random graphs. J. Comb. Theory Ser. B 47, 125–145 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Behrisch, A. Coja-Oghlan, M. Kang, The order of the giant component of random hypergraphs (2007). http://arxiv.org/abs/0706.0496

  4. M. Behrisch, A. Coja-Oghlan, M. Kang, The order of the giant component of random hypergraphs. Random Struct. Algorithm. 36, 149–184 (2010)

    MathSciNet  MATH  Google Scholar 

  5. M. Behrisch, A. Coja-Oghlan, M. Kang, Local limit theorems for the giant component of random hypergraphs. Comb. Probab. Comput. 23, 331–366 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Behrisch, A. Coja-Oghlan, M. Kang, The asymptotic number of connected d-uniform hypergraphs. Comb. Probab. Comput. 23, 367–385 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Behrisch, A. Coja-Oghlan, M. Kang, Corrigendum ‘The asymptotic number of connected d-uniform hypergraphs’. Comb. Probab. Comput. 24, 373–375 (2014)

    Article  MATH  Google Scholar 

  8. E. Bender, E. Canfield, B. McKay, The asymptotic number of labeled connected graphs with a given number of vertices and edges. Random Struct. Algorithm. 1, 127–169 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Bollobás, The evolution of random graphs. Trans. Am. Math. Soc. 286, 257–274 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Bollobás, Random Graphs, 2nd edn. (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  11. B. Bollobás, O. Riordan, A simple branching process approach to the phase transition in G n, p . Electron. J. Comb. 19, Paper 21 (2012)

    Google Scholar 

  12. B. Bollobás, O. Riordan, Asymptotic normality of the size of the giant component in a random hypergraph. Random Struct. Algorithm. 41, 441–450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Bollobás, O. Riordan, Counting connected hypergraphs via the probabilistic method (2014). http://arxiv.org/abs/1404.5887

  14. A. Coja-Oghlan, C. Moore, V. Sanwalani, Counting connected graphs and hypergraphs via the probabilistic method. Random Struct. Algorithm. 31, 288–329 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Cooley, M. Kang, Y. Person, Giant components in random hypergraphs (2014). http://arxiv.org/abs/1412.6366

  16. O. Cooley, M. Kang, C. Koch, The size of the giant components in random hypergraphs (2015). http://arxiv.org/abs/1501.07835

  17. O. Cooley, M. Kang, C. Koch, Threshold and hitting time for high-order connectivity in random hypergraphs (2015). http://arxiv.org/abs/1502.07289

  18. P. Erdős, A. Rényi, On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MathSciNet  MATH  Google Scholar 

  19. S. Janson, T. Łuczak, A. Ruciński, Random Graphs (Wiley, New York, 2000)

    Book  MATH  Google Scholar 

  20. M. Karoński, T. Łuczak, The phase transition in a random hypergraph. J. Comput. Appl. Math. 142, 125–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Karp, The transitive closure of a random digraph. Random Struct. Algorithm. 1, 73–93 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Łuczak, On the number of sparse connected graphs. Random Struct. Algorithm. 1, 171–173 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Łuczak, Component behavior near the critical point of the random graph process. Random Struct. Algorithm. 1, 287–310 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. B. Pittel, N. Wormald, Counting connected graphs inside out. J. Comb. Theory Ser. B 93, 127–172 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. C.M. Sato, N. Wormald, Asymptotic enumeration of sparse connected 3-uniform hypergraphs (2014). http://arxiv.org/abs/1401.7381

    Google Scholar 

  26. J. Schmidt-Pruzan, E. Shamir, Component structure in the evolution of random hypergraphs. Combinatorica 5, 81–94 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. V.E. Stepanov, On the probability of connectedness of a random graph g m (t). Theory Prob. Appl. 15, 55–67 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. van der Hofstad, J. Spencer, Counting connected graphs asymptotically. Eur. J. Comb. 27, 1294–1320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This article is based on the author’s lecture at the IMA Workshop “Probabilistic and Extremal Combinatorics”, which took place at the Institute of Mathematics and its Applications (IMA), University of Minnesota, 8–12 September 2014. The author is supported by the Austrian Science Fund (FWF): P26826, W1230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihyun Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kang, M. (2016). Giant components in random graphs. In: Beveridge, A., Griggs, J., Hogben, L., Musiker, G., Tetali, P. (eds) Recent Trends in Combinatorics. The IMA Volumes in Mathematics and its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-24298-9_10

Download citation

Publish with us

Policies and ethics