Skip to main content

Enumerating Maximal Clique Sets with Pseudo-Clique Constraint

  • Conference paper
  • First Online:
Discovery Science (DS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9356))

Included in the following conference series:

Abstract

It is an important task in Data Mining and Social Network Analysis to detect dense subgraphs, namely pseudo-cliques in networks. Given a positive integer k designating an upper bound of the number of disconnections, some algorithms to enumerate k-plexes as pseudo-cliques have been proposed based on the anti-monotonicity property similar to the case of cliques. Those algorithms are however effective only for small k, since every vertex set with its size less than \(k+1\) is trivially a k-plex. Moreover, there still exist non-dense k-plexes with their sizes exceeding k. For these reasons, it has been a hard task to design an efficient k-plex enumerator for non-small k. This paper aims at developing a fast enumerator for finding densely connected k-plexes for non-small k, avoiding both of the small k-plexes and non-dense medium k plexes. For this purpose, we construct a clique-graph from the original input graph and consider meta-cliques of overlapping cliques satisfying several constraints about k-plexness and overlappingness using bond measure for set-theoretic correlation. We also show its usefulness by exhaustive experiments about the number of solution k-plexes, computational costs and even the quality of output k-plexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://sites.google.com/site/greedycliqueexpansion/.

  2. 2.

    https://github.com/bagrow/linkcomm.

  3. 3.

    http://www.oslom.org/software.htm.

  4. 4.

    http://www.cs.bris.ac.uk/~steve/networks/software/copra.html.

References

  1. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)

    Article  Google Scholar 

  2. Alba, R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Soci. 3, 3–113 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batagelj, V., Mrvar, A.: Pajek datasets (2006). http://vlado.fmf.uni-lj.si/pub/networks/data/

  4. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. Adv. Data Anal. Classif. 5, 129–145 (2003)

    Article  MATH  Google Scholar 

  5. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    Article  MATH  Google Scholar 

  6. Carrington, P.J., Scott, J., Wasserman, S.: Models and Methods in Social Network Analysis, vol. 28. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  7. Collins, S.R., Kemmeren, P., Zhao, X.C., Greenblatt, J.F., Spencer, F., Holstege, F.C., Weissman, J.S., Krogan, N.J.: Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. Mol. Cell. Proteomics 6(3), 439–450 (2007)

    Article  Google Scholar 

  8. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 364–375. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12(10), 103018 (2010)

    Article  Google Scholar 

  11. Hamelink, R.C.: A partial characterization of clique graphs. J. Comb. Theor. 5(2), 192–197 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haraguchi, M., Okubo, Y.: A method for pinpoint clustering of web pages with pseudo-clique search. In: Jantke, K.P., Lunzer, A., Spyratos, N., Tanaka, Y. (eds.) Federation over the Web. LNCS (LNAI), vol. 3847, pp. 59–78. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant communities in networks. PloS one 6(4), e18961 (2011)

    Article  Google Scholar 

  14. Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community structure by greedy clique expansion. In: Proceedings of the 4th Workshop on Social Network Mining and Analysis held in Conjunction with the International Conference on Knowledge Discovery and Data Mining (SNA/KDD 2010), pp. 33–42 (2010)

    Google Scholar 

  15. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  16. Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15(2), 169–190 (1950)

    Article  MathSciNet  Google Scholar 

  17. McClosky, B., Hicks, I.V.: Combinatorial algorithms for the maximum k-plex problem. J. Comb. Optim. 23(1), 29–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mokken, R.: Cliques, clubs and clans. Qual. Quant. Int. J. Methodol. 13(2), 161–173 (1979)

    Article  Google Scholar 

  19. Omiecinski, E.R.: Alternative interest measures for mining associations in databases. IEEE Trans. Knowl. Data Eng. 15(1), 57–69 (2003)

    Article  MathSciNet  Google Scholar 

  20. Pattillo, J., Youssef, N., Butenko, S.: Clique relaxation models in social network analysis. In: Thai, M.T., Pardalos, P.M. (eds.) Handbook of Optimization in Complex Networks, pp. 143–162. Springer, New York (2012)

    Chapter  Google Scholar 

  21. Pu, S., Wong, J., Turner, B., Cho, E., Wodak, S.J.: Up-to-date catalogues of yeast protein complexes. Nucleic Acids Res. 37(3), 825–831 (2009)

    Article  Google Scholar 

  22. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept*. J. Math. Sociol. 6(1), 139–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Slater, N., Itzchack, R., Louzoun, Y.: Mid size cliques are more common in real world networks than triangles. Netw. Sci. 2(03), 387–402 (2014)

    Article  Google Scholar 

  24. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theoret. Comput. Sci. 363(1), 28–42 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Viger, F., Latapy, M.: Efficient and simple generation of random simple connected graphs with prescribed degree sequence. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 440–449. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  27. Wu, B., Pei, X.: A parallel algorithm for enumerating all the maximal k-plexes. In: Washio, T., Zhou, Z.-H., Huang, J.Z., Hu, X., Li, J., Xie, C., He, J., Zou, D., Li, K.-C., Freire, M.M. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4819, pp. 476–483. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Zhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhai, H., Haraguchi, M., Okubo, Y., Tomita, E. (2015). Enumerating Maximal Clique Sets with Pseudo-Clique Constraint. In: Japkowicz, N., Matwin, S. (eds) Discovery Science. DS 2015. Lecture Notes in Computer Science(), vol 9356. Springer, Cham. https://doi.org/10.1007/978-3-319-24282-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24282-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24281-1

  • Online ISBN: 978-3-319-24282-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics