Skip to main content

Discovery, Testing and Improving the Production of Herbs and New Drugs

  • Chapter
  • First Online:
Medicinal Orchids of Asia

Abstract

Mass screening of plants for chemical compound has produced a vast library of chemical compounds from which scientists hope to find new remedies to slow the ageing process and health decline and to treat diseases. This chapter provides an outline of the areas of pharmaceutical interest and the processes by which compounds are discovered and evaluated. It also discusses methods for medicinal crop protection and genetic manipulation for better production of phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdin MZ (2007) Enhancing bioactive molecules in medicinal plants. In: Zhu YZ, Tan BKH, Bay BH, Liu CH (eds) Natural products. Essential resources for human survival. World Scientific, Singapore

    Google Scholar 

  • Abdin MZ, Israr M, Srivastava PS et al (2001) In vitro production of artemisinin, a novel antimalarial compound from Artemisia annua. J Med Arom Plant Sci 22/4A, 23/1A:378–384

    Google Scholar 

  • Aberoumard A (2009) Preliminary assessment of nutritional value of plant based diets in relation to mineral nutrition. Int J Food Sci Nutr 60(Suppl 4):155–162

    Article  Google Scholar 

  • Abraham A, Vatsala P (1981) Introduction to orchids, with illustrations and descriptions of 150 South Indian orchids. TPGRI, Trivandrum

    Google Scholar 

  • Belrmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a phalaenopsis orchid. Plant Cell Rep 19:435–442

    Article  Google Scholar 

  • Boorsma WG (1902) Pharmakologische Mitteilungen I. Bull l’INst Botan Buitenzorg 14:1–39

    Google Scholar 

  • Chan YL, Lin KH, Sanjaya et al (2005) Gene stacking in phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14(3):279–288

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Chen YC, Hsu YH et al (2005) Transgenic resistance to cymbidium mosaic virus in dendrobium expressing the viral capsid protein gene. Transgenic Res 14(1):41–46

    Article  PubMed  Google Scholar 

  • Chen DH, Yi HC, Li GF (2000) Expression of a chimeric famesyl adiphosphate synthase gene in Artimisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 155:179–185

    Article  CAS  PubMed  Google Scholar 

  • Chi DP, Mii M (2011) Dwarf phalaenopsis plant produced by overexpression of giberrelin2-oxidase gene. In: Proceedings of the NIOC Nagoya, Japan, 11 Mar 2011

    Google Scholar 

  • Chia TF, Chan YS, Chua NH (1994) The firefly luciferase gene as a non-invasive reporter for dendrobium transformation. Plant J 6(3):441–446

    Article  CAS  Google Scholar 

  • Chia TF, Lim AYH, Luan Y, Ng I (2001) Transgenic dendrobium (orchid). Biotech Agri For 48:95–106

    CAS  Google Scholar 

  • da Silva JAT, Chin DP, Pham TV, Mii M (2011) Transgenic orchids. Sci Hortic 4:673–680

    Article  Google Scholar 

  • Han SQB (2010) Quick characterization of apoptosis inducers from natural products by a drug discovery platform composed of high-speed counter-current chromatography and the fluorescence-based caspase-3 biosensor detection. In: Conference abstracts on: recent developments in Chinese herbal medicine. Nanyang Technological University, 2010, p 24

    Google Scholar 

  • Lawler LJ, Slaytor M (1969) The distribution of alkaloids in orchids from the territory of Papua New Guinea. Proc Linnean Soc NSW 94:419–421

    Google Scholar 

  • Li SZ (1578) Ben Cao Gung Mu (reprinted 1977 by People’s Health Publishing Co.,Beijing)

    Google Scholar 

  • Li WT, Huang LF, Du J, Chen SL (2013) Relationship between dendrobium quality and ecological factors based on partial least square regression. Ying Yong Sheng Tai Xue Bao 24(10):2787–2792

    CAS  PubMed  Google Scholar 

  • Lim SH, Ko MK, Lee SJ et al (1999) Cymbidium mosaic virus coat protein gene in antisense confers resistance to transgenic Nicotiana occidentalis. Mol Cells 9(60):603–608

    CAS  PubMed  Google Scholar 

  • Liu BY, Wang H, Duet ZG et al (2011) Metabolic engineering of artemesinin biosynthesis in Artemesia annua L. Plant Cell Rep 30:689–694

    Article  CAS  PubMed  Google Scholar 

  • Luning B (1967) Studies on the Orchidaceae alkaloids IV. Screening of the species for alkaloids 2. Phytochemistry 6:857–861

    Article  CAS  Google Scholar 

  • Luning B (1974) Alkaloids of the Orchidaceae. In: Withner CL (ed) The orchids: scientific studies. Wiley, New York

    Google Scholar 

  • Luo KQ (2010) Cellular, molecular and animal studies for the anti-cancer effect of oblongifolin C discovered from Garcinia yunnanensis by bioassay-guided screening. In: Hew CS (ed) Recent development in Chinese Herbal Medicine Abstracts. Nanayang Technological University, Singapore, p 34

    Google Scholar 

  • Lupo R, Rubino L, Russo M (1994) Immuno-detection of the 33K/92K polymerase proteins in cymbidium ringspot virus-infected and in transgenic plant tissue extracts. Arch Virol 138(1–2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Meng CM, Wu JK, Xie L et al (2007) Production of monoclonal antibodies to cymbidium mosaic virus and application in orchids virus detection. Wei Sheng Wu Xue Bao 47(5):928–931

    CAS  PubMed  Google Scholar 

  • Nan GL, Kado CI, Kuehnle AR (1998) Transgenic dendrobium orchid tissue through agrobacterium-mediated transformation. Malayan Orchid Rev 32:93–96

    Google Scholar 

  • Obsuwan K, Borth W, Hu J et al (2003) Development of transgenic dendrobium orchid resistant to CyMV. In: American society of plant pathology annual meeting, Abstract #732

    Google Scholar 

  • Rubino L, Apriotti G, Lupo R, Russo M (1993) Resistance to cymbidium ringspot tombusvirus infection in transgenic Nicotiana benthamiana plants expressing the virus coat protein gene. Plant Mol Biol 21(4):665–672

    Article  CAS  PubMed  Google Scholar 

  • Sa G, Mi M, He-chun Y et al (2001) Effects of IPT gene expression on the physiological and chemical characteristics of Artemesia annua L. Plant Sci 160(4):691–698

    Article  PubMed  Google Scholar 

  • Sarmma S, Senthikumar N, Das SK (2008) Insect pests of medicinal and aromatic plants and their management: an overview. Indian Forester 134(1):105–118

    Google Scholar 

  • Schaller H, Grausem P, Benveniste B et al (1995) Expression of the Hevea brazilensis (H.B.K) Mull. Arg.3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase 1 in Tobacco Results in Sterol Overproduction. Plant Physiol 109(3):761–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schnabel G, Scorza R, Lauyne DR (2010) Increases resistance of plants to pathogens from multiple higher order phylogentic lineages. Patent No: US 07807869. Official Gazette of the United States Patent and Trademark Office Patents OCT 5 2010

    Google Scholar 

  • Semiarti E, Indrianto A, Pirwantoro A et al (2007) Agrobacterium-mediated transformation of the wild species Phalaenopsis amabilis. Plant Biotechnol 24(3):265–272

    Article  CAS  Google Scholar 

  • Semiarti E, Indrianto A, Suyono EA et al (2010) Genetic transformation of the Indonesian black orchid (Coelogyne pandurata Lindley) through Agrobacterium tumefaciens for micropropagation. In: Proceedings of NIOC 2010, Nagoya Dome, Japan, 16–20, 2010

    Google Scholar 

  • Semiarti E, Indrianto A, Pirwantoro A et al (2015) Agrobacterium mediated transformation of Indonesian orchids for micropropagation. www.intechopen.com

  • Semiarti E, Purwantoro A, Dwiyani R et al (2009) Perbandingan karakter morfologi dan molekuler Vanda tricolor Lindl var sauvis forma Merapi dan Vanda tricolor Lindl. var auvis forma Bali. UIN Maulana Malik Ibrahim, Yogyakarta

    Google Scholar 

  • Tang K, She Q, Yan T, Fu X (2014) Transgenic approach to increase artemisinin content in Artemisia annua L. Plant Cell Rep 33(4):605–615

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Long SP, Zeng LX et al (2014) Enhancement of artemisinin biosynthesis in transgenic Artemisia annua L. by overexpressed HDR and ADS genes. Yao Xue Xue Bao 49(9):1346–1352

    CAS  PubMed  Google Scholar 

  • Xu G, Feng C, Zhou Y et al (2008) Bioassay and ultra-performance liquid chromatography/mass spectrometry guided isolation of apoptosis-inducing benzophenones and xanthone from the pericarp of Garcinia yunnanensis Hu. J Agri Food Chem 56(23):11144–11150

    Article  CAS  Google Scholar 

  • Yu H, Yang SH, Goh CJ (2001) Agrobacterium-mediated transformation of a dendrobium orchid with the class 1 knox gene DOH1. Plant Cell Rep 20:301–305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Teoh, E.S. (2016). Discovery, Testing and Improving the Production of Herbs and New Drugs. In: Medicinal Orchids of Asia. Springer, Cham. https://doi.org/10.1007/978-3-319-24274-3_6

Download citation

Publish with us

Policies and ethics