Skip to main content

Similarity Analysis from Limiting Quantum Walks

  • Conference paper
  • First Online:
Similarity-Based Pattern Recognition (SIMBAD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9370))

Included in the following conference series:

  • 1903 Accesses

Abstract

Similarity compression is a critical step to improve the efficiency of edge detection. In this paper, we compare two approaches for compressing/decompressing similarity matrices, being edge detection our application domain. In this regard, state-of-the-art contour detectors rely on spectral clustering where pixel or patch similarity is encoded in a symmetric weight matrix and the eigenvectors of the normalized Laplacian derived from this matrix are clustered in order to find contours (normalized cuts and its variants). Despite significant interest in learning the similarity measure for providing well localized boundaries, the underlying spectral analysis has played a subsidiary role, and has mostly been based on classical random walks and the heat kernel. However, recent findings based on continuous-time quantum walks suggest that under the complex wave equation there are long-range interactions not present in the classical case. In the case of the edge map this opens up a means of controlling texture in the edge map by a simple thresholding. In this paper, we use the long-time averages of quantum walks for edge detection, and show that texture is a consequence of short-rangedness of these interactions. This is due to the local-to-global property of limiting quantum walks. In addition, when analyzing the role of limiting quantum walks as intermediate/indirect similarity decompression, we find that quantum walks are able of recovering the original edge structure when a factorization compressor is used, whereas this is not the case when compression relies on the Szemeéredi Regularity Lemma, despite this latter method is by far more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  2. Martin, D.R., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)

    Article  Google Scholar 

  3. Dollar, P., Tu, Z., Belongie, S.: Supervised learning of edges and object boundaries. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2006, vol. 2, pp. 1964–1971. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  4. Lim, J.J., Zitnick, C.L., Dollár, P.: Sketch tokens: a learned mid-level representation for contour and object detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23–28, pp. 3158–3165 (2013)

    Google Scholar 

  5. Isola, P., Zoran, D., Krishnan, D., Adelson, E.H.: Crisp boundary detection using pointwise mutual information. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part III. LNCS, vol. 8691, pp. 799–814. Springer, Heidelberg (2014)

    Google Scholar 

  6. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  7. Zhou, X., Belkin, M., Srebro, N.: An iterated graph laplacian approach for ranking on manifolds. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21–24, pp. 877–885 (2011)

    Google Scholar 

  8. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  9. Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1873–1890 (2007)

    Article  Google Scholar 

  10. Grady, L.: Random walks for image segmentation. TPAMI 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  11. Bai, L., Rossi, L., Torsello, A., Hancock, E.R.: A quantum jensen-shannon graph kernel for unattributed graphs. Pattern Recogn. 48(2), 344–355 (2015)

    Article  Google Scholar 

  12. Rossi, L., Torsello, A., Hancock, E.R., Wilson, R.C.: Characterizing graph symmetries through quantum jensen-shannon divergence. Phys. Rev. E 88, 032806 (2013)

    Article  Google Scholar 

  13. Mülken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502(2–3), 37–87 (2011)

    Article  MathSciNet  Google Scholar 

  14. Stone, M.: On one-parameter unitary groups in hilbert space. Ann. Math. 33(3), 643–648 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  MathSciNet  Google Scholar 

  16. Szemerédi, E.: Regular partitions of graphs. In: Colloques Internationaux CNRS 260-Problèmes Combinatoires et Théorie des Graphes, Orsay, pp. 399–401 (1976)

    Google Scholar 

  17. Nourbakhsh, F., Bulò, S.R., Pelillo, M.: A matrix factorization approach to graph compression. In: 22nd International Conference on Pattern Recognition, ICPR 2014, Stockholm, Sweden, August 24–28, pp. 76–81. IEEE (2014)

    Google Scholar 

  18. Sperotto, A., Pelillo, M.: Szemerédi’s regularity lemma and its applications to pairwise clustering and segmentation. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 13–27. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic aspects of the regularity lemma. J. Algorithms 16(1), 80–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nourbakhsh, F.: Algorithms for graph compression: theory and experiments. Ph.D. thesis, Dipartamento di Scienze Ambientali, Infomatica e Statisitica, Universitá Ca’Foscari, Venice, IT (2015)

    Google Scholar 

Download references

Acknowledgements

Funding. F. Escolano and M. Curado: Project TIN2012-32839 (Spanish Gov.). E. R. Hancock: Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Escolano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Curado, M., Escolano, F., Hancock, E.R., Nourbakhsh, F., Pelillo, M. (2015). Similarity Analysis from Limiting Quantum Walks. In: Feragen, A., Pelillo, M., Loog, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2015. Lecture Notes in Computer Science(), vol 9370. Springer, Cham. https://doi.org/10.1007/978-3-319-24261-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24261-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24260-6

  • Online ISBN: 978-3-319-24261-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics