Spider Silks and Their Biotechnological Applications

  • Daniela Matias de C. BittencourtEmail author
Part of the Entomology in Focus book series (ENFO, volume 4)


Spiders have developed specialized silks with outstanding biophysical properties over millions of years of evolution. As biopolymers composed by highly repetitive amino acid motifs, spider silks have been the focus of research for years. Due to recent advances in genetic engineering, recombinant spider silks have been produced, revealing the relationships between their protein structure and their mechanical properties. Each amino acid motif present in the silk adopts a particular secondary structure responsible for conferring a specific mechanical property to it. This feature has opened up the possibility to produce recombinant silks with controlled properties for various biotechnological applications. Moreover, spider silks are biocompatible and biodegradable biomaterials, which also allow their application in medicine. Accordingly, the relationship between molecular composition, secondary structure, and mechanical properties of spider silks is described in this chapter, along with a discussion of the current strategies for the production of recombinant spider silks, their importance in new biotechnological applications, and the current status of the field.


Silk Fiber Amino Acid Motif Silk Protein Spider Silk Transgenic Silkworm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Amino acid alanine


Cauliflower mosaic virus


Enhanced green fluorescent protein


Endoplasmic reticulum


Flagelliform spidroin


Amino acid glycine




Major ampullate spidroin 1


Major ampullate spidroin 2


Minor ampullate spidroin


Amino acid proline


Transfer ribonucleic acid


  1. 1.
    Lewis, R. V. (2006). Spider silk: ancient ideas for new biomaterials. Chemical Reviews, 106, 37262–3774.CrossRefGoogle Scholar
  2. 2.
    Gosline, J. M., Guerette, P. A., Ortlepp, C. S., & Savage, K. N. (1999). The mechanical design of spider silks: From fibroin sequence to mechanical function. The Journal of Experimental Biology, 202, 3295–3303.PubMedGoogle Scholar
  3. 3.
    Gosline, J. M., Denny, M. W., & DeMont, M. E. (1984). Spider silk as rubber. Nature, 309, 551–552.CrossRefGoogle Scholar
  4. 4.
    Blackledge, T. A., & Hayashi, C. Y. (2006). Silken toolkits: Biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). The Journal of Experimental Biology, 209, 2452–2461.CrossRefPubMedGoogle Scholar
  5. 5.
    Vollrath, F., & Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature, 410, 541–548.CrossRefPubMedGoogle Scholar
  6. 6.
    Knight, D. P., & Vollrath, F. (2001). Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften, 4, 179–182.CrossRefGoogle Scholar
  7. 7.
    Sponner, A., Schlott, B., Vollrath, F., Unger, E., et al. (2005). Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry, 44, 4727–4736.CrossRefPubMedGoogle Scholar
  8. 8.
    Gatesy, J., Hayashi, C., Motriuk, D., Woods, J., & Lewis, R. (2001). Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science, 291, 2603–2605.CrossRefPubMedGoogle Scholar
  9. 9.
    Hayashi, C. Y., Shipley, N. H., & Lewis, R. V. (1999). Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. International Journal of Biological Macromolecules, 24, 271–275.CrossRefPubMedGoogle Scholar
  10. 10.
    Savage, K. N., & Gosline, J. M. (2008). The role of proline in the elastic mechanism of hydrated spider silks. The Journal of Experimental Biology, 211, 1948–1957.CrossRefPubMedGoogle Scholar
  11. 11.
    Adrianos, S. L., Teulé, F., Hinman, M. B., Jones, J. A., Weber, W. S., Yarger, J. L., & Lewis, R. V. (2013). Nephila clavipes Flagelliform silk-like GGX motifs contribute to extensibility and spacer motifs contribute to strength in synthetic spider silk fibers. Biomacromolecules, 14, 1751–1760.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vollrath, F., Barth, P., Basedow, A., Engstrom, W., & List, H. (2002). Local tolerance to spider silks and protein polymers in vivo. In Vivo, 16, 229–234.PubMedGoogle Scholar
  13. 13.
    Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., et al. (2003). Silk-based biomaterials. Biomaterials, 24, 401–416.CrossRefPubMedGoogle Scholar
  14. 14.
    Wright, S., & Goodacre, S. L. (2012). Evidence for antimicrobial activity associated with common house spider silk. BMC Research Notes, 5, 326.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Horan, R. L., Antle, K., Collette, A. L., Wang, Y., et al. (2005). In vitro degradation of silk fibroin. Biomaterials, 26, 3385–3393.CrossRefPubMedGoogle Scholar
  16. 16.
    Sponner, A. (2007). Spider silk as a resource for future biotechnologies. Entomological Research, 37, 238–250.CrossRefGoogle Scholar
  17. 17.
    Allmeling, C., Jokuszies, A., Reimers, K., Kall, S., et al. (2008). Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Proliferation, 41, 408–420.CrossRefPubMedGoogle Scholar
  18. 18.
    Vollrath, F., & Porter, D. (2009). Silks as ancient models for modern polymers. Polymer, 50, 5623–5632.CrossRefGoogle Scholar
  19. 19.
    Fahnestock, S. R., & Irwin, S. L. (1997). Synthetic spider dragline silk proteins and their production in Escherichia coli. Applied Microbiology and Biotechnology, 47, 23–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Fahnestock, S. R., & Bedzyk, L. A. (1997). Production of synthetic spider dragline silk protein in Pichia pastoris. Applied Microbiology and Biotechnology, 47, 33–39.CrossRefPubMedGoogle Scholar
  21. 21.
    Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J.-F., Duguay, F., Chretien, N., Welsh, E. A., Soares, J. W., & Karatzas, C. N. (2002). Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science, 259, 472–476.CrossRefGoogle Scholar
  22. 22.
    Barr, L. A., Fahnestock, S. R., & Yang, J. J. (2004). Production and purification of recombinant DP1B silk-like protein in plants. Molecular Breeding, 13, 345–356.CrossRefGoogle Scholar
  23. 23.
    Menassa, R., Zhu, H., Karatzas, C. N., Lazaris, A., et al. (2004). Spider dragline silk proteins in transgenic tobacco leaves: Accumulation and field production. Plant Biotechnology Journal, 2, 431–438.CrossRefPubMedGoogle Scholar
  24. 24.
    Xu, H. T., Fan, B. L., Yu, S. Y., Huang, Y. H., Zhao, Z. H., Lian, Z. X., Dai, Y. P., Wang, L. L., Liu, Z. L., Fei, J., & Li, N. (2007). Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Animal Biotechnology, 18, 1–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Bittencourt, D., Oliveira, P. F., Prosdocimi, F., & Rech, E. L. (2012). Protein families, natural history and biotechnological aspects of spider silk. Genetics and Molecular Research, 11, 2360–2380.CrossRefPubMedGoogle Scholar
  26. 26.
    Tokareva, O., Jacobsen, M., Buehler, M., Wong, J., & Kaplan, D. L. (2014). Structure-function-property-design interplay in biopolymers: Spider silk. Acta Biomaterialia, 10, 1612–1626.CrossRefPubMedGoogle Scholar
  27. 27.
    Gosline, J., Lillie, M., Carrington, E., Guerette, P., Ortlepp, C., & Savage, K. (2002). Elastic proteins: Biological roles and mechanical properties. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357, 121–132.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Blackledge, T. A., & Hayashi, C. Y. (2006). Unraveling the mechanical properties of composite silk threads spun by cribellate orb-weaving spiders. The Journal of Experimental Biology, 209, 3131–3140.CrossRefPubMedGoogle Scholar
  29. 29.
    Agnarsson, I., Kuntner, M., & Blackledge, T. A. (2010). Bioprospecting finds the toughest biological material: Extraordinary silk from a giant riverine orb spider. PLoS One, 5, e11234.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hinman, M. B., & Lewis, R. V. (1992). Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. Journal of Biological Chemistry, 267, 19320–19324.PubMedGoogle Scholar
  31. 31.
    Keten, S., & Buehler, M. J. (2010). Nanostructure and molecular mechanics of spider dragline silk protein assemblies. Journal of the Royal Society Interface, 7, 1709–1721.CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Termonia, Y. (1994). Molecular modelling of spider silk elasticity. Macromolecules, 27, 7378–7381.CrossRefGoogle Scholar
  33. 33.
    Liu, Y., Shao, Z. Z., & Vollrath, F. (2005). Relationships between supercontraction and mechanical properties of spider silk. Nature Materials, 4, 901–905.CrossRefPubMedGoogle Scholar
  34. 34.
    Vollrath, F., & Knight, D. P. (1999). Structure and function of the silk production pathway in the spider Nephila edulis. International Journal of Biological Macromolecules, 24, 243–249.CrossRefPubMedGoogle Scholar
  35. 35.
    Marhabaie, M., Leeper, T. C., & Blackledge, T. A. (2014). Protein composition correlates with the mechanical properties of spider (Argiope trifasciata) dragline silk. Biomacromolecules, 15, 20–29.CrossRefPubMedGoogle Scholar
  36. 36.
    Brooks, A. E., Steinkraus, H. B., Nelson, S. R., & Lewis, R. V. (2005). An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia. Biomacromolecules, 6, 3095–3099.CrossRefPubMedGoogle Scholar
  37. 37.
    Hagn, F., Eisoldt, L., Hardy, J. G., Vendrely, C., et al. (2010). A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature, 465, 239–242.CrossRefPubMedGoogle Scholar
  38. 38.
    Silvers, R., Buhr, F., & Schwalbe, H. (2010). The molecular mechanism of spider-silk formation. Angewandte Chemie International Edition in English, 49, 5410–5412.CrossRefGoogle Scholar
  39. 39.
    Hayashi, C. Y., & Lewis, R. V. J. (1998). Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. Molecular Biology, 275, 773–784.CrossRefGoogle Scholar
  40. 40.
    Martino, M., Bavoso, A., Guantieri, V., Coviello, A., & Tamburro, A. M. (2000). On the occurrence of polyproline II structure in elastin. Journal of Molecular Structure, 519, 173–189.CrossRefGoogle Scholar
  41. 41.
    Bittencourt, D., Souto, B. M., Verza, N. C., Vinecky, F., Dittmar, K., Silva, P. I., Jr., Andrade, A. C., da Silva, F. R., Lewis, R. V., & Rech, E. L. (2007). Spidroins from the Brazilian spider Nephilengys cruentata (araneae: Nephilidae). Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 147, 597–606.CrossRefPubMedGoogle Scholar
  42. 42.
    Hayashi, C. Y., & Lewis, R. V. (2000). Molecular architecture and evolution of a modular spider silk protein gene. Science, 287, 1477–1479.CrossRefPubMedGoogle Scholar
  43. 43.
    Hinman, M. B., Jones, J. A., & Lewis, R. V. (2000). Synthetic spider silk: a modular fiber. Trends in Biotechnology, 18, 374–379.CrossRefPubMedGoogle Scholar
  44. 44.
    Vollrath, F., Fairbrother, W. J., Williams, R. J. P., Tillinghast, E. K., et al. (1990). Compounds in the droplets of the Orb Spiders Viscid Spiral. Nature, 345, 526–528.CrossRefGoogle Scholar
  45. 45.
    Choresh, O., Bayarmagnai, B., & Lewis, R. V. (2009). Spider web glue: Two proteins expressed from opposite strands of the same DNA sequence. Biomacromolecules, 10, 2852–2856.CrossRefPubMedGoogle Scholar
  46. 46.
    Spiess, K., Lammel, A., & Scheibel, T. (2010). Recombinant spider silk proteins for applications in biomaterials. Macromolecular Bioscience, 10, 998–1007.CrossRefPubMedGoogle Scholar
  47. 47.
    Rising, A., Widhe, M., Johansson, J., & Hedhammar, M. (2011). Spider silk proteins: Recent advances in recombinant production, structure-function relationships and biomedical applications. Cellular and Molecular Life Sciences, 68, 169–184.CrossRefPubMedGoogle Scholar
  48. 48.
    Hofer, M., Winter, G., & Myschik, J. (2012). Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials, 33, 1554–1562.CrossRefPubMedGoogle Scholar
  49. 49.
    Schacht, K., & Scheibel, T. (2014). Processing recombinant spider silk proteins into tailor-made materials for biomaterials applications. Current Opinion in Biotechnology, 29, 62–69.CrossRefPubMedGoogle Scholar
  50. 50.
    Chung, H., Kim, T. Y., & Lee, S. Y. (2012). Recent advances in production of recombinant spider silk proteins. Current Opinion in Biotechnology, 23, 957–996.CrossRefPubMedGoogle Scholar
  51. 51.
    Tokareva, O., Michalczechen-Lacerda, V. A., Rech, E. L., & Kaplan, D. L. (2013). Recombinant DNA production of spider silk proteins. Microbial Biotechnology, 6, 651–663.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Vendrely, C., & Scheibel, T. (2007). Biotechnological production of spider-silk proteins enables new applications. Macromolecular Bioscience, 7, 401.CrossRefPubMedGoogle Scholar
  53. 53.
    Heim, M., Ackerschott, C. B., & Scheibel, T. (2010). Characterization of recombinantly produced spider flagelliform silk domains. Journal of Structural Biology, 170, 420.CrossRefPubMedGoogle Scholar
  54. 54.
    Rising, A., Widhe, M., Johansson, J., & Hedhammar, M. (2011). Spider silk proteins: Recent advances in recombinant production, structure-function relationships and biomedical applications. Cellular and Molecular Life Sciences, 68, 169–184.CrossRefPubMedGoogle Scholar
  55. 55.
    Teulé, F., Addison, B., Cooper, A. R., Ayon, J., Henning, R. W., Benmore, C. J., et al. (2012). Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Biopolymers, 97, 418–431.CrossRefPubMedGoogle Scholar
  56. 56.
    Teulé, F., Cooper, A. R., Furin, W. A., Bittencourt, D., Rech, E. L., Brooks, A., & Lewis, R. V. (2009). A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nature Protocols, 4, 324–355.CrossRefGoogle Scholar
  57. 57.
    Brooks, A. E., Stricker, S. M., Joshi, S. B., Kamerzell, T. J., Middaugh, C. R., & Lewis, R. V. (2008). Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules, 9, 1506–1510.CrossRefPubMedGoogle Scholar
  58. 58.
    Xia, X. X., Qian, Z. G., Ki, C. S., Park, Y. H., Kaplan, D. L., & Lee, S. Y. (2010). Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences of the United States of America, 107, 14059–14063.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Xu, H. T., Fan, B. L., Yu, S. Y., Huang, Y. H., Zhao, Z. H., Lian, Z. X., et al. (2007). Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Animal Biotechnology, 18, 1–12.CrossRefPubMedGoogle Scholar
  60. 60.
    Steinkraus, H. B., Rothfuss, H., Jones, J. A., Dissen, E., Shefferly, E., & Lewis, R. V. (2012). The absence of detectable fetal microchimerism in nontransgenic goats (Capra aegagrus hircus) bearing transgenic offspring. Journal of Animal Science, 90, 481–488.CrossRefPubMedGoogle Scholar
  61. 61.
    An, B., Hinman, M. B., Holland, G. P., Yarger, J. L., & Lewis, R. V. (2011). Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules, 12, 2375–2381.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Dams-Kozlowska, H., Majer, A., Tomasiewicz, P., Lozinska, J., Kaplan, D. L., & Mackiewicz, A. (2012). Purification and cytotoxicity of tag-free bioengineered spider silk proteins. Journal of Biomedical Materials Research. Part A, 101A, 456–464.CrossRefGoogle Scholar
  63. 63.
    Scheller, J., Guhrs, K. H., Grosse, F., & Conrad, U. (2001). Production of spider silk proteins in tobacco and potato. Nature Biotechnology, 19, 573–577.CrossRefPubMedGoogle Scholar
  64. 64.
    Hauptmann, V., Weichert, N., Menzel, M., Knoch, D., et al. (2013). Native sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Research, 22, 369–377.CrossRefPubMedGoogle Scholar
  65. 65.
    Teulé, F., Miao, Y. G., Sohn, B. H., Kim, Y. S., Hull, J. J., Fraser, M. J., et al. (2012). Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proceedings of the National Academy of Sciences of the United States of America, 109, 923–928.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kluge, J. A., Rabotyagova, O., Leisk, G. G., & Kaplan, D. L. (2008). Spider silks and their applications. Trends in Biotechnology, 26, 244–251.CrossRefPubMedGoogle Scholar
  67. 67.
    Huemmerich, D., et al. (2006). Processing and modification of films made from recombinant spider silk proteins. Applied Physics A, 82, 219–222.CrossRefGoogle Scholar
  68. 68.
    Lammel, A., Schwab, M., Slotta, U., Winter, G., & Scheibel, T. (2008). Processing conditions for the formation of spider silk microspheres. ChemSusChem, 1, 413–416.CrossRefPubMedGoogle Scholar
  69. 69.
    Slotta, U. K., Rammensee, S., Gorb, S., & Scheibel, T. (2008). An engineered spider silk protein forms microspheres. Angewandte Chemie International Edition in English, 47, 4592–4594.CrossRefGoogle Scholar
  70. 70.
    Rammensee, S., Slotta, U., Scheibel, T., & Bausch, A. R. (2008). Assembly mechanism of recombinant spider silk proteins. Proceedings of the National Academy of Sciences of the United States of America, 105, 6590–6595.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Arcidiacono, S., Mello, C. M., Butler, M., Welsh, E., Soares, J. W., Allen, A., Ziegler, D., Laue, T., & Chase, S. (2002). Aqueous processing and fiber spinning of recombinant spider silks. Macromolecules, 35, 1262–1266.CrossRefGoogle Scholar
  72. 72.
    Scheibel, T., Huemmerich, D., Remmensee, S., Freudiger, C., & Bausch, A. (2007). Microfluidic device for controlled aggregation of spider silk. US patent WO 2007/141131 A1.Google Scholar
  73. 73.
    Slotta, U., Mougin, N., Romer, L., & Leimer, A. H. (2012). Synthetic spider silk proteins and threads. Chemical Engineering Progress, 108, 43–49.Google Scholar
  74. 74.
    Albertson, A. E., Teulé, F., Weber, W., Yarger, J. L., & Lewis, R. V. (2014). Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers. Journal of the Mechanical Behavior of Biomedical Materials, 29, 225–234.CrossRefPubMedGoogle Scholar
  75. 75.
    Lee, S. M., Pippel, E., Gösele, U., Dresbach, C., Qin, Y., Chandran, C. V., Bräuniger, T., Hause, G., & Knez, M. (2009). Greatly increased toughness of infiltrated spider silk. Science, 324, 488–492.CrossRefPubMedGoogle Scholar
  76. 76.
    Gomes, S. C., Leonor, I. B., Mano, J. F., Reis, R. L., & Kaplan, D. L. (2011). Antimicrobial functionalized genetically engineered spider silk. Biomaterials, 32, 4255–4266.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Belton, D. J., Mieszawska, A. J., Currie, H. A., Kaplan, D. L., & Perry, C. C. (2012). Silk-silica composites from genetically engineered chimeric proteins: Materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir, 28, 4373–4381.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Vidal, G., Blanchi, T., Mieszawska, A. J., Calabrese, R., Rossi, C., Vigneron, P., et al. (2013). Enhanced cellular adhesion on titanium by silk functionalized with titanium binding and RGD peptides. Acta Biomaterialia, 9, 4935–4943.CrossRefPubMedGoogle Scholar
  79. 79.
    Krishnaji, S. T., & Kaplan, D. L. (2013). Bioengineered chimeric spider silk-uranium binding proteins. Macromolecular Bioscience, 13, 256–264.CrossRefPubMedGoogle Scholar
  80. 80.
    Karageorgiou, V., Meinel, L., Hofmann, S., Malhotra, A., et al. (2004). Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Journal of Biomedial Materials Research Part A, 71, 528–537.CrossRefGoogle Scholar
  81. 81.
    Leal-Egana, A., & Scheibel, T. (2012). Interactions of cells with silk surfaces. Journal of Materials Chemistry, 22, 14330–14336.CrossRefGoogle Scholar
  82. 82.
    Bauer, F., Wohlrab, S., & Scheibel, T. (2013). Controllable cell adhesion, growth and orientation on layered silk protein films. Biomaterials Science, 1, 1244–1249.CrossRefGoogle Scholar
  83. 83.
    Jansson, R., Thatikonda, N., Lindberg, D., Rising, A., Johansson, J., Nygren, P. Å., & Hedhammar, M. (2014). Recombinant spider silk genetically functionalized with affinity domains. Biomacromolecules, 15, 1696–1706.CrossRefPubMedGoogle Scholar
  84. 84.
    Lammel, A., Schwab, M., Hofer, M., Winter, G., & Scheibel, T. (2011). Recombinant spider silk particles as drug delivery vehicles. Biomaterials, 32, 2233–2240.CrossRefPubMedGoogle Scholar
  85. 85.
    Numata, K., Mieszawska-Czajkowska, A. J., Kvenvold, L. A., & Kaplan, D. L. (2012). Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromolecular Bioscience, 12, 75–82.CrossRefPubMedGoogle Scholar
  86. 86.
    Zeplin, P. H., Maksimovikj, N. C., Jordan, M. C., Nickel, J., Lang, G., Leimer, A. H., Römer, L., & Scheibel, T. (2014). Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation. Advanced Functional Materials, 24, 2658–2666.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Research and Development DepartmentBrazilian Agricultural Research Corporation-EmbrapaBrasíliaBrazil

Personalised recommendations