Insect Biotechnology

  • Anthony O. EjioforEmail author
Part of the Entomology in Focus book series (ENFO, volume 4)


For the purpose of this work, insect biotechnology, which is also known as yellow biotechnology, is the use of insects as well as insect-derived cells or molecules in medical (red biotechnology), agricultural (green biotechnology), and industrial (white) biotechnology. It is based on the application of biotechnological techniques on insects or their cells to develop products or services for human use. Such products are then applied in agriculture, medicine, and industrial biotechnology. Insect biotechnology has proven to be a useful resource in diverse industries, especially for the production of industrial enzymes including chitinases and cellulases, pharmaceuticals, microbial insecticides, insect genes, and many other substances. Insect cells (ICs), and particularly lepidopteran cells, constitute a competitive strategy to mammalian cells for the manufacturing of biotechnology products. Among the wide range of methods and expression hosts available for the production of biotech products, ICs are ideal for the production of complex proteins requiring extensive posttranslational modification. The progress so far made in insect biotechnology essentially derives from scientific breakthroughs in molecular biology, especially with the advances in techniques that allow genetic manipulation of organisms and cells. Insect biotechnology has grown tremendously in the last 30 years.


Enhance Green Fluorescent Protein Insect Cell Severe Acute Respiratory Syndrome Sf21 Cell Genetically Modify Crop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Adeno-associated virus


Autographa californica multinuclear polyhedrosis virus


Bacillus thuringiensis




Crystal protein


Enhanced green fluorescent protein


Farnesoid X-activated receptor


Green fluorescent protein


Genetically modified


Herbicide resistant


Baculovirus expression vector


Insect cell baculovirus expression vector system


Insect cell


Insect resistant


Liver X receptor




Multiplicity of infection


Methicillin-resistant Staphylococcus aureus


Nucleopolyhedrosis virus


Recombinant adeno-associated virus


Recombinant TNF-related apoptosis-inducing ligand


Recombinant baculovirus


Vascular endothelial growth factor


Viruslike particle


  1. 1.
    Vilcinskas, A. (Ed.). (2011). Insect biotechnology biologically-inspired systems. Dordrecht: Springer. doi: 10.1007/978-90-481-9641-8.Google Scholar
  2. 2.
    Vilcinskas, A. (Ed.). (2013). Yellow biotechnology I: Insect biotechnology in drug discovery and preclinical research (Advances in biochemical engineering/biotechnology). Berlin/Heidelberg: Springer. doi:  10.1007/978-3-642-39863-6
  3. 3.
    Vilcinskas, A. (Ed.). (2013). Yellow biotechnology II: Insect biotechnology in plant protection and industry (Advances in biochemical engineering/biotechnology). Berlin/Heidelberg: Springer. doi: 10.1007/978-3-642-39902-2.Google Scholar
  4. 4.
    Ratcliffe, N., Azambuja, P., Mello, C. B. (2014). Recent advances in developing insect natural products as potential modern day medicines. Ecam, 2014, Article ID 904958, 1–21.Google Scholar
  5. 5.
    Drugmand, J. C., Schneider, Y. J., & Agathos, S. N. (2012). Insect cells as factories for biomanufacturing. Biotechnology Advances, 30(5), 1140–57.PubMedCrossRefGoogle Scholar
  6. 6.
    Ikonomou, L., Schneider, Y. J., & Agathos, S. N. (2003). Insect cell culture for industrial production of recombinant proteins. Applied Microbiology and Biotechnology, 62(1), 1–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Chapman, A. D. (2011). Numbers of living species in Australia and the world (2nd Ed.). Report for the Australian Biological Resources.
  8. 8.
    Kumar, P., Pandit, S. S., & Baldwin, I. T. (2012). Tobacco rattle virus vector: A rapid and transient means of silencing Manduca sexta genes by plant mediated RNA interference. PLoS ONE, 7(2), e31347.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Tokareva, O., Michalczechen-Lacerda, V. A., Elíbio, L. R., & Kaplan, D. L. (2013). Recombinant DNA production of spider silk proteins. Microbial Biotechnology, 6, 651–663.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    USDA. (2009). Insects, nematodes, and biotechnology. Accessed 12 June 2014
  11. 11.
    Frisvold, G. B., & Reeves, J. M. (2010). Resistance management and sustainable use of agricultural biotechnology. AgBioforum, 13(4), 343–359.Google Scholar
  12. 12.
    Merryweather, A. T., Crampton, J. M., & Townson, H. (1990). Purification and properties of an esterase from organophosphate-resistant strain of the mosquito Culex quinquefasciatus. Biochemistry Journal, 266, 83–90.CrossRefGoogle Scholar
  13. 13.
    Ejiofor, A. O., & Johnson, T. (2002). Physiological and molecular detection of crystalliferous Bacillus thuringiensis strains from habitats in the South Central United States. Journal of Industrial Microbiology and Biotechnology, 28(5), 284–290.PubMedCrossRefGoogle Scholar
  14. 14.
    Martin, P. A. W., & Travers, R. S. (1989). Worldwide abundance and distribution of Bacillus thuringiensis isolates. Applied and Environmental Microbiology, 55(10), 2437–2442.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Forsyth, G., & Logan, N. A. (2000). Isolation of Bacillus thuringiensis from Northern Victoria Land, Antarctica. Letters in Applied Microbiology, 30, 263–266.PubMedCrossRefGoogle Scholar
  16. 16.
    Berόn, C. M., Curatti, L., & Salerno, G. L. (2005). New strategy for identification of novel cry-type genes from Bacillus thuringiensis strains. Applied and Environmental Microbiology, 71(2), 761–765.CrossRefGoogle Scholar
  17. 17.
    Noguera, P. A., & Ibarra, J. E. (2010). Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Applied and Environmental Microbiology, 76(18), 6150–6155.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Konecka, E., Baranek, J., Hrycak, A., & Kaznowski, A. (2012). Insecticidal activity of Bacillus thuringiensis strains isolated from soil and water. The Scientific World Journal, 2012 (2012), 1–5.CrossRefGoogle Scholar
  19. 19.
    Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology Review, 53(2), 242–255.Google Scholar
  20. 20.
    Schnepf, E., Crickmore, N., van Rie, J., et al. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 775–806.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Crickmore, N., Zeigler, D. R., Feitelson, J., et al. (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 807–813.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Bravo, A. S., Gill, S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423–435.PubMedCrossRefGoogle Scholar
  23. 23.
    Tonks, A. J., Dudley, E., Porter, N. G., Parton, J., Brazier, J., Smith, E. L., & Tonks, A. (2007). A5.8-kDa component of manuka honey stimulates immune cells via TLR4. Journal of Leukocyte Biology, 82(5), 1147–1155.PubMedCrossRefGoogle Scholar
  24. 24.
    Cooper, R. A., Lindsay, E., & Molan, P. C. (2011). Testing the susceptibility to manuka honey of streptococci isolated from wound swabs. Journal of ApiProduct and ApiMedical Science, 3(3), 117–122.CrossRefGoogle Scholar
  25. 25.
    Henriques, A. F., Jenkins, R. E., Burton, N. F., & Cooper, R. A. (2011). The effect of manuka honey on the structure of Pseudomonas aeruginosa. European Journal of Clinical Microbiology & Infectious Disease, 30(2), 167–171.CrossRefGoogle Scholar
  26. 26.
    Brudzynski, K., Abubaker, K., & Wang, T. (2012). Powerful killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide. Frontiers in Microbiology, 3, 242.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Maddocks, S. E., Lopez, M. S., Rowlands, R. S., & Cooper, R. A. (2012). Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology, 158(3), 781–790.PubMedCrossRefGoogle Scholar
  28. 28.
    Bulet, P., Hetru, C., Dimarcq, J. L., & Hoffmann, D. (1999). Antimicrobial peptides in insects; structure and function. Developmental and Comparative Immunology, 23, 329–344.PubMedCrossRefGoogle Scholar
  29. 29.
    Bulet, P., Hegy, G., Lambert, J., Dorsselaer, A. V., Hoffman, J. A., & Hetru, C. (1995). Insect immunity. The inducible antibacterial peptide diptericin carries two O-glycan necessary for biological activity. Biochemistry, 34(22), 7394–7400.PubMedCrossRefGoogle Scholar
  30. 30.
    Moore, A. J., Beazley, W. D., Bibby, M. C., & Devine, D. A. (1996). Antimicrobial activity of cecropins. Journal of Antimicrobial Chemotherapy, 37, 1077–1089.PubMedCrossRefGoogle Scholar
  31. 31.
    Kwakman, P., & Zaat, S. A. J. (2012). Antibacterial components of honey. Life, 64(1), 48–55.PubMedGoogle Scholar
  32. 32.
    Spagnuolo, C., Russo, M., Bilotto, S., Tedesco, I., Laratta, B., & Russo, G. L. (2012). Dietary polyphenols in cancer prevention: The example of the flavonoid quercetin in leukemia. Annals of the New York Academy of Science, 1259, 95–103.CrossRefGoogle Scholar
  33. 33.
    Szliszka, E., & Krol, W. (2013). Polyphenols isolated from propolis augment TRAIL-induced apoptosis in cancer cells. Evidence-Based Complementary and Alternative Medicine, X, ID 731940, 1–10.Google Scholar
  34. 34.
    Budhraja, A., Gao, N., Zhang, Z., Son, Y. O., Cheng, S., Wang, X., Ding, S., Hitron, A., Chen, G., Luo, J., & Shi, X. (2012). Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo. Molecular Cancer Therapeutics, 11(1), 132–142.PubMedCrossRefGoogle Scholar
  35. 35.
    Gajski, D., & Garaj-Vrhovac, V. (2013). Melittin: A lytic peptide with anticancer properties. Environmental Toxicology and Pharmacology, 36(2), 697–705.PubMedCrossRefGoogle Scholar
  36. 36.
    Oršolić, N. (2012). Bee venom in cancer therapy. Cancer and Metastasis Reviews, 31, 173–194.PubMedCrossRefGoogle Scholar
  37. 37.
    Chernysh, S., Kim, S. S. I., Bekker, G., Pleskach, V. A., Filatova, N. A., Anikin, V. B., Platonov, V. G., & Bulet, P. (2002). Antiviral and antitumor peptides from insects. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12628–12632.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Galvis, C. E. P., Mendez, L. Y. V., & Kouznetsov, V. V. (2013). Cantharidin-based small molecules as potential therapeutic agents. Chemical Biology and Drug Design, 82, 477–499.CrossRefGoogle Scholar
  39. 39.
    Bajsa, J., McCluskey, A., Gordon, C. P., Stewart, S. G., Hill, T. A., Sahu, R., Duke, S. O., & Tekwani, B. L. (2012). The antiplasmodial activity of norcantharidin analogs. Bioorganic and Medicinal Chemistry Letters, 20(22), 6688–6695.CrossRefGoogle Scholar
  40. 40.
    Ghaffarifar, F. (2010). Leishmania major: in vitro and in vivo antileishmanial effect of cantharidin. Experimental Parasitology, 126(2), 126–129.PubMedCrossRefGoogle Scholar
  41. 41.
    Huang, Y.-P., Ni, C.-H., Lu, C.-C., Chiang, J.-H., Yang, J.-S., Ko, Y.-C., Lin, J.-P., Kuo, J.-H., Chang, S.-J., & Chung, J.-G. (2013). Suppressions of migration and invasion by cantharidin in TSGH-8301 human bladder carcinoma cells through the inhibitions of matrix metalloproteinase-2/-9 signaling. Evidence-Based Alternative Medicine, Article ID 190281, 1–8.Google Scholar
  42. 42.
    Kazimrová, M., & Štibrániova, I. (2013). Tick salivary compounds: Their role in modulation of host defenses and pathogen transmission. Cellular Infectious Microbiology, 3, article 43.Google Scholar
  43. 43.
    Frank, C., Werber, D., Cramer, J. P., Askar, M., Faber, M., der Heiden, M., Bernard, H., Fruth, A., Prager, R., Spode, A., Wadl, M., Zoufaly, A., Jordan, S., Kemper, M., Follin, P., Müller, L., King, L. A., Rosner, B., Buchholz, U., Stark, K., & Krause, G. (2011). Epidemic profile of shiga-toxin–producing Escherichia coli O104:H4 outbreak in Germany. The New England Journal of Medicine, 365(19), 1770–1780.CrossRefGoogle Scholar
  44. 44.
    Dwight, E. L. (2002). Methods for maintaining insect cell cultures. Journal of Insect Science, 2(9).Google Scholar
  45. 45.
    Geisse, S. (2007). Insect cell cultivation and generation of recombinant Baculovirus particles for recombinant protein production. In Ralf Pörtner (Ed.), Animal cell biotechnology methods in biotechnology (Vol. 24, pp. 489–507). Humana Press, ISSN 1940–6061.Google Scholar
  46. 46.
    Grace, T. D. C. (1962). Establishment of four strains of cells from insect tissues grown in vitro. Nature, 195, 788–789.PubMedCrossRefGoogle Scholar
  47. 47.
    Wyatt, S. S. (1956). Culture in vitro of tissue from the silkworm, Bombyx mori L. Journal of General Physiology, 39(6), 841–852.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hink, W. F., & Ellis, B. J. (1971). Establishment and characterization of two new cell lines (CP-1268 and CP-169) from the codling moth, Carpocapsa pomonella (with a review of culture of cells and tissues from Lepidoptera). Current Topics in Microbiology and Immunology, 55, 19–28.PubMedGoogle Scholar
  49. 49.
    Mitsuhashi, J. (2001). Development of highly nutritive culture media. In Vitro Cellular & Developmental Biology (Animal), 37, 330–337.CrossRefGoogle Scholar
  50. 50.
    Lynn, D. E. (2001). Novel techniques to establish new insect cell lines. In Vitro Cellular & Developmental Biology (Animal), 37, 319–21.CrossRefGoogle Scholar
  51. 51.
    Lynn, D. E. (2007). Available lepidopteran insect cell lines. In D. W. Murhammer (Ed.), Methods in molecular biology series. Baculovirus and insect cell expression protocols (pp. 117–144). New York: Springer.Google Scholar
  52. 52.
    Weiss, S. A., Smith, G. C., Kalter, S. S., & Vaughn, J. L. (1981). Improved method for the production of insect cell cultures in large volume. Vitro, 17(6), 495–502.CrossRefGoogle Scholar
  53. 53.
    Schlaeger, E. J. (1996). Medium design for insect cell culture. Cytotechnology, 20, 57–70.PubMedCrossRefGoogle Scholar
  54. 54.
    Granados, R. R., Li, G., & Blissard, G. W. (2007). Insect cell culture and biotechnology. Virologica Sinica, 22(2), 83–93.CrossRefGoogle Scholar
  55. 55.
    Vaughn, J. L. (1968). A review of the use of insect tissue culture for the study of insect associated viruses. Current Topics in Microbiology and Immunology, 42, 108–128.PubMedGoogle Scholar
  56. 56.
    Sudeep, A. B., Mourya, D. T., & Mishra, A. C. (2005). Insect cell culture in research: Indian scenario. Indian Journal of Medical Research, 121, 725–738.PubMedGoogle Scholar
  57. 57.
    Smith, G. E., Summers, M. D., & Frazer, M. J. (1983). Production of human beta interferon in insect cells infected with a baculovirus expression vector. Molecular and Cellular Biology, 3, 2156–2165.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Wood, H. A. (1995). Development and testing of genetically improved baculovirus insecticides. In M. L. Shuler, H. A. Wood, R. R. Granados, & D. A. Hammer (Eds.), Insect cell cultures: Production of improved bio-pesticides and proteins from recombinant DNA (pp. 91–130). New York: Wiley-Liss.Google Scholar
  59. 59.
    Carbonell, L. F., Hodge, M. R., Tomalski, M. D., & Miller, M. K. (1988). Synthesis of a gene coding for an insect-specific scorpion neurotoxin and attempts to express it using baculovirus vectors. Gene, 73, 409–418.PubMedCrossRefGoogle Scholar
  60. 60.
    Tracey, M. F., All, J. N., & Glidia, G. M. (1997). Effect of ecdysteroid UDP-glycosyl transferase gene deletion on efficacy of a baculovirus against Heliothis virescens and Trichoplusia ni (Lepidoptera: Noctuidae). Journal of Economic Entomology, 90, 1207–14.CrossRefGoogle Scholar
  61. 61.
    Gershberg, E., Stockholm, D., Froy, O., Rashi, S., Gurevitz, M., & Chejanovsky, N. (1998). Baculovirus mediated expression of a scorpion depressant toxin improves the insecticidal efficacy achieved with excitatory toxin. FEBS Letters, 422, 132–6.CrossRefGoogle Scholar
  62. 62.
    Fuxa, J. R., Richter, A. R., Ameen, A. O., & Hammock, B. D. (2002). Vertical transmission of TnSNPV, TnCPV, AcMNPV and probably recombinant NPV in Trichoplusia ni. Journal of Invertebrate Pathology, 79, 44–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Gundersen-Rindal, D., & Dougherty, E. M. (2000). Evidence for integration of Glyptapanteles indiensis polydnavirus DNA into the chromosome of Lymantria dispar in vitro. Virus Research, 66, 27–37.PubMedCrossRefGoogle Scholar
  64. 64.
    Mudiganti, U., Hernandez, R., Ferreira, D., & Brown, D. T. (2006). Sindbis virus infection of two model insect cell systems: A comparative study. Virus Research, 122, 28–34.PubMedCrossRefGoogle Scholar
  65. 65.
    Schutz, S., & Sarnow, P. (2006). Interaction of viruses with the mammalian RNA interference pathway. Virology, 344, 151–157.PubMedCrossRefGoogle Scholar
  66. 66.
    Lennan, E., Vandergaast, R., & Friesen, P. D. (2007). Baculovirus caspase inhibitors P49 and P35 block virus-induced apoptosis downstream of effector caspase DrICE activation in Drosophila melanogaster cells. Journal of Virology, 81, 9319–9330.CrossRefGoogle Scholar
  67. 67.
    Li, H., & Bonning, B. C. (2007). Evaluation of the insecticidal efficacy of wild-type and recombinant baculoviruses. Methods in Molecular Biology, 388, 379–404.PubMedCrossRefGoogle Scholar
  68. 68.
    Condreay, J. P., & Kost, T. A. (2007). Baculovirus expression vectors for insect and mammalian cells. Current Drug Targets, 8, 1126–1131.PubMedCrossRefGoogle Scholar
  69. 69.
    Law, J. H., & Wells, M. A. (1989). Insects as biochemical models. Journal of Biological Chemistry, 264, 16335–16338.PubMedGoogle Scholar
  70. 70.
    Erayya, J. J., Sajeesh, P. K., & Vinod, U. (2013). Nuclear polyhedrosis virus (NPV), a potential biopesticide: A review. Research Journal of Agricultural Forest Science, 1(8), 30–33.Google Scholar
  71. 71.
    Jekely, G. (2013). Global view of the evolution and diversity of metazoan neuropeptide signaling. Proceedings of the National Academy of Sciences of the United States of America, 110, 8702–8707.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Jarvis, D. L. (2009). Baculovirus-insect cell expression systems. Methods in Enzymology, 463, 191–222.PubMedCrossRefGoogle Scholar
  73. 73.
    Haase, S., Ferrelli, L., Pidre, M. L., & Romanowski, V. (2013). Genetic engineering of Baculoviruses. In: Current issues in molecular virology – Viral genetics and biotechnological applications (pp. 79–111). InTech, Rijeka, Croatia - EUROPEAN UNION doi:  10.5772/56976
  74. 74.
    Boztug, K., Schmidt, M., Schwarzer, A., Banerjee, P. P., Diez, I. A., Dewey, R. A., Bohm, M., Nowrouzi, A., Ball, C. R., Glimm, H., Naundorf, S., Kühlcke, K., Blasczyk, R., Kondratenko, I., Maródi, L., Orange, J. S., von Kalle, C., & Klein, C. (2010). Stem-cell gene therapy for the Wiskott-Aldrich syndrome. New England Journal of Medicine, 363, 1918–1927.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hacein-Bey-Abina, S., Hauer, J., Lim, A., Picard, C., Wang, G. P., Berry, C. C., Martinache, C., Rieux-Laucat, F., Latour, S., Belohradsky, B. H., Leiva, L., Sorensen, R., Debre, M., Casanova, J. L., Blanche, S., Durandy, A., Bushman, F. D., Fischer, A., & Cavazzana-Calvo, M. (2010). Efficacy of gene therapy for X-linked severe combined immunodeficiency. New England Journal of Medicine, 363, 355–364.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Friedrich, M. J. (2010). Seeing is believing: Gene therapy shows promise for ocular disorders. JAMA, 304, 1543–1545.PubMedCrossRefGoogle Scholar
  77. 77.
    Luckow, V. L., & Summers, M. D. (1988). Trends in the development of baculovirus expression vectors. BioTechnology, 6, 47–55.CrossRefGoogle Scholar
  78. 78.
    O’Reilly, D. R., Miller, L. K., & Luckow, V. A. (1992). Baculovirus expression vectors: A laboratory manual. New York: W.H. Freeman.Google Scholar
  79. 79.
    Miller, L. K. (Ed.). (1997). The baculoviruses. New York: Plenum Press.Google Scholar
  80. 80.
    Kost, T. A., & Condreay, J. P. (1999). Recombinant baculoviruses as expression vectors for insect and mammalian cells. Current Opinion in Biotechnology, 10, 428–433.PubMedCrossRefGoogle Scholar
  81. 81.
    Freisen, D. P., & Miller, L. K. (2001). Insect viruses. In D. M. Knipe et al. (Eds.), Fields’ virology (4th ed., pp. 1871–1940). Philadelphia: Lippincott Williams and Wilkins.Google Scholar
  82. 82.
    Kost, T. A., Condreay, J. P., & Jarvis, D. L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotechnology, 23(5), 567–575.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Roldao, A., Mellado, M. C., Castilho, L. R., Carrondo, M. J., & Alves, P. M. (2010). Virus-like particles in vaccine development. Expert Review of Vaccines, 9, 1149–1176.PubMedCrossRefGoogle Scholar
  84. 84.
    van Oers, M. M. (2006). Vaccines for viral and parasitic diseases produced with baculovirus vectors. Advances in Virus Research, 68, 193–253.PubMedCrossRefGoogle Scholar
  85. 85.
    Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P., & Strauss, M. (1995). Efficient gene transfer into human hepatocytes by baculovirus vectors. Proceedings of the National Academy of Sciences of the United States of America, 92, 10099–10103.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Boyce, F. M., & Bucher, N. L. (1996). Baculovirus-mediated gene transfer into mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 93, 2348–2352.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Urabe, M., Ding, C., & Kotin, R. M. (2002). Insect cells as a factory to produce adeno-associated virus type 2 vectors. Human Gene Therapy, 13, 1935–1943.PubMedCrossRefGoogle Scholar
  88. 88.
    Negrete, A., & Kotin, R. M. (2007). Production of recombinant adeno-associated vectors using two bioreactor configurations at different scales. Journal of Virological Methods, 145(2), 155–61.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Negrete, A., Esteban, G., & Kotin, R. M. (2007). Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy. Applied Microbiology and Biotechnology, 76(4), 761–72.PubMedCrossRefGoogle Scholar
  90. 90.
    Virag, T., Cecchini, S., & Kotin, R. M. (2009). Producing recombinant adeno-associated virus in foster cells: overcoming production limitations using a baculovirus-insect cell expression strategy. Human Gene Therapy, 20(8), 807–17.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cecchini, S., Virag, T., & Kotin, R. M. (2011). Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Human Gene Therapy, 22(8), 1021–30.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Airenne, K. J., Makkonen, K. E., Mahonen, A. J., & Yla-Herttuala, S. (2010). In vivo application and tracking of baculovirus. Current Gene Therapy, 10, 187–194.PubMedCrossRefGoogle Scholar
  93. 93.
    Madhan, S., Prabakaran, M., & Kwang, J. (2010). Baculovirus as vaccine vectors. Current Gene Therapy, 10, 201–213.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang, S., & Balasundaram, G. (2010). Potential cancer gene therapy by baculoviral transduction. Current Gene Therapy, 10, 214–225.PubMedCrossRefGoogle Scholar
  95. 95.
    Lin, C. Y., Lu, C. H., Luo, W. Y., Chang, Y. H., Sung, L. Y., Chiu, H. Y., & Hu, Y.-C. (2010). Baculovirus as a gene delivery vector for cartilage and bone tissue engineering. Current Gene Therapy, 10, 242–254.PubMedCrossRefGoogle Scholar
  96. 96.
    Immonen, A., Vapalahti, M., Tyynela, K., Hurskainen, H., Sandmair, A., Vanninen, R., Langford, G., Murray, N., & Ylä-Herttuala, S. (2004). AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Molecular Therapy, 10, 967–972.PubMedCrossRefGoogle Scholar
  97. 97.
    Dropulic, B. (2011). Lentiviral vectors: Their molecular design, safety, and use in laboratory and preclinical research. Human Gene Therapy, 22, 649–657.PubMedCrossRefGoogle Scholar
  98. 98.
    Airenne, K. J., Hu, Y.-C., Kost, T. A., Smith, R. H., Kotin, R. M., Ono, C., Matsuura, Y., Wang, S., & Ylä-Herttuala, S. (2013). Baculovirus: An insect-derived vector for diverse gene transfer applications. Molecular Therapy, 21(4), 739–749.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Luo, W. Y., Shih, Y. S., Lo, W. H., Chen, H. R., Wang, S. C., Wang, C. H., Chien C-H Chiang, S.-H., Chiang, C.-H., Chuang, Y.-J., & Hu, Y.-C. (2011). Baculovirus vectors for antiangiogenesis-based cancer gene therapy. Cancer Gene Therapy, 18, 637–645.PubMedCrossRefGoogle Scholar
  100. 100.
    Luo, W. Y., Shih, Y. S., Hung, C. L., Lo, K. W., Chiang, C. S., Lo, W. H., Huang, S.-F., Wang, S.-C., Yu, C.-F., Chien, C.-H., & Hu, Y.-C. (2012). Development of the hybrid sleeping beauty-baculovirus vector for sustained gene expression and cancer therapy. Gene Therapy, 19, 844–851.PubMedCrossRefGoogle Scholar
  101. 101.
    Bak, X. Y., Yang, J., & Wang, S. (2010). Baculovirus-transduced bone marrow mesenchymal stem cells for systemic cancer therapy. Cancer Gene Therapy, 17, 721–729.PubMedCrossRefGoogle Scholar
  102. 102.
    Bak, X. Y., Lam, D. H., Yang, J., Ye, K., Wei, E. L., Lim, S. K., & Wang, S. (2011). Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma. Human Gene Therapy, 22, 1365–1377.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhao, Y., Lam, D. H., Yang, J., Lin, J., Tham, C. K., Ng, W. H., & Wang, S. (2012). Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells GM by baculoviral vectors. Gene Therapy, 19, 189–200.PubMedCrossRefGoogle Scholar
  104. 104.
    Giacca, M., & Zacchigna, S. (2012). Virus-mediated gene delivery for human gene therapy. Journal of Controlled Release, 161, 377–388.PubMedCrossRefGoogle Scholar
  105. 105.
    Summers, M. D. (2006). Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. Advances in Virus Research, 68, 3–73.PubMedCrossRefGoogle Scholar
  106. 106.
    Airenne, K. J., Mahonen, A. J., Laitinen, O. H., & Ylä-Herttuala, S. (2009). Baculovirus-mediated gene transfer: An emerging universal concept. In N. S. Templeton (Ed.), Gene and cell therapy: Therapeutic mechanisms and strategies (3rd ed., pp. 263–307). Boca Raton: CRC Press.Google Scholar
  107. 107.
    Chen, C. Y., Lin, C. Y., Chen, G. Y., & Hu, Y. C. (2011). Baculovirus as a gene delivery vector: Recent understandings of molecular alterations in transduced cells and latest applications. Biotechnology Advances, 29, 618–631.PubMedCrossRefGoogle Scholar
  108. 108.
    Persson, I., Granath, F., Askling, J., Ludvigsson, J. F., Olsson, T., & Feltelius, N. (2014). Risks of neurological and immune-related diseases, including narcolepsy, after vaccination with Pandemrix: A population- and registry-based cohort study with over 2 years of follow-up. Journal of Internal Medicine, 275(2), 172–90.PubMedCrossRefGoogle Scholar
  109. 109.
    van Oers, M. M., Pijlman, G. P., & Vlak, J. M. (2014). Thirty years of baculovirus-insect cell protein expression: From dark horse to mainstream technology. Journal of General Virology, doi:  10.1099/vir.0.067108-0
  110. 110.
    Skowronski, D. M., Naveed, Z. J., Gaston, D. S., Sabaiduc, S., Eshaghi, A., Dickinson, J. A., Fonseca, A., Winter, A.-L., Gubbay, J. B., Krajden, M., Petric, M., Charest, H., Bastien, N., Kwindt, T. L., Mahmud, S. M., Caeseele, P. V., & Li, Y. (2014). Low 2012–13 influenza vaccine effectiveness associated with mutation in the egg-adapted H3N2 vaccine strain not antigenic drift in circulating viruses. PLoS One, 9(3), e92153.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mäkelä, A. R., Ernst, W., Grabherr, R., & Oker-Blom, C. (2010). Baculovirus-based display and gene delivery systems. Cold Spring Harbor Protocols. doi: 10.1101/pdb.top72.Google Scholar
  112. 112.
    Hoogenboom, H. R., & Chames, P. (2000). Natural and designer binding sites made by phage display technology. Immunology Today, 21(8), 371–378.PubMedCrossRefGoogle Scholar
  113. 113.
    Ernst, W., Grabherr, R., Wegner, D., Borth, N., Grassauer, A., & Katinger, H. (1998). Baculovirus surface display: Construction and screening of a eukaryotic epitope library. Nucleic Acids Research, 26, 1718–1723.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Grabherr, R., Ernst, W., Oker-Blom, C., & Jones, I. (2001). Developments in the use of baculoviruses for the surface display of complex eukaryotic proteins. Trends in Biotechnology, 19(6), 231–236.PubMedCrossRefGoogle Scholar
  115. 115.
    Grabherr, R., Ernst, W., Doblhoff-Die, O., Sara, M., & Katinge, H. (1997). Expression of foreign proteins on the surface of Autographa californica nuclear polyhedrosis virus. BioTechniques, 22, 730–735.PubMedGoogle Scholar
  116. 116.
    Boublik, Y., Di Bonito, P., & Jones, U. K. (1995). Eukaryotic virus display: Engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Biotechnology, 13, 1079–1084.PubMedCrossRefGoogle Scholar
  117. 117.
    Mottershead, D., Van Der Linden, I., Von Bonsdorff, C. H., Keinanen, K., & Oker-Blom, C. (1997). Baculoviral display of the green fluorescent protein and rubella virus envelope proteins. Biochemical and Biophysical Research Communications, 238, 717–722.PubMedCrossRefGoogle Scholar
  118. 118.
    Tami, C., Farber, M., Palma, E. L., & Taboga, O. (2000). Presentation of antigenic sites from foot-and-mouth disease virus on the surface of baculovirus and in the membrane of infected cells. Archives of Virology, 145, 1815–1828.PubMedCrossRefGoogle Scholar
  119. 119.
    Kaba, S. A., Hemmes, J. C., van Lent, J. W., Vlak, J. M., Nene, V., Musoke, A. J., & van Oers, M. M. (2003). Baculovirus surface display of Theileria parva p67 antigen preserves the conformation of sporozoite-neutralizing epitopes. Protein Engineering, 16, 73–78.PubMedCrossRefGoogle Scholar
  120. 120.
    Kukkonen, S. P., Airenne, A. J., Marjomäki, V., Laitinen, O. H., Lehtolainen, P., Kankaanpää, P., Mähönen, A. J., Räty, J. K., Nordlund, H. R., Oker-Blom, C., Kulomaa, M. S., & Ylä-Herttuala, S. (2003). Baculovirus capsid display: A novel tool for transduction imaging. Molecular Therapy, 8(5), 853–862.PubMedCrossRefGoogle Scholar
  121. 121.
    Oker-Blom, C., Airenne, K. J., & Grabherr, R. (2003). Baculovirus display strategies: Emerging tools for eukaryotic libraries and gene delivery. Briefings in Functional Genomics and Proteomics, 2(3), 244–253.PubMedCrossRefGoogle Scholar
  122. 122.
    Aucoin, M. G., Jacob, D., Chahal, P. S., Meghrous, J., Bernier, A., & Kamen, A. A. (2007). Virus-like particle and viral vector production using the baculovirus expression vector system/insect cell system: Adeno-associated virus-based products. Methods in Molecular Biology, 388, 281–296.PubMedCrossRefGoogle Scholar
  123. 123.
    Fernandes, F., Teixeira, A. P., Carinhas, N., Carrondo, M. J. T., & Alves, P. M. (2003). Insect cells as a production platform of complex virus-like particles. Expert Reviews in Vaccines, 12(2), 225–236.CrossRefGoogle Scholar
  124. 124.
    Lin, C. Y., Chang, Y. H., Lin, K. J., Yen, T. C., Tai, C. L., Chen, C. Y., Lo, W.-H., Hsiao, I.-T., & Hu, Y.-C. (2010). The healing of critical-sized femoral segmental bone defects in rabbits using baculovirus-engineered mesenchymal stem cells. Biomaterials, 31, 3222–3230.PubMedCrossRefGoogle Scholar
  125. 125.
    Chuang, C.-K., Wong, T.-H., Hwang, S.-M., Chang, Y.-H., Chen, G.-Y., Chu, Y.-C., Huang, S.-F., & Hu, Y.-C. (2009). Baculovirus transduction of mesenchymal stem cells: In Vitro responses and In Vivo immune responses after cell transplantation. Molecular Therapy, 17, 889–896.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chen, W.-H., Lai, W.-F., Deng, W.-P., Yang, W. K., Lo, W.-C., Wu, C.-C., Yang, D.-M., Lai, M.-T., Lin, C.-T., Lin, T.-W., & Yang, C.-B. (2006). Tissue engineered cartilage using human articular chondrocytes immortalized by HPV-16 E6 and E7 genes. Jouranl of Biomedical Materal Research, 76A(3), 512–520.CrossRefGoogle Scholar
  127. 127.
    Chen, H.-C., Chang, Y.-H., Chuang, C.-K., Lin, C.-Y., Sung, L.-Y., Wang, Y. H., & Hu, Y.-C. (2009). The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials, 30, 674–681.PubMedCrossRefGoogle Scholar
  128. 128.
    Hu, Y. C., Yao, K., & Wu, T. Y. (2008). Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Review of Vaccines, 7, 363–371.PubMedCrossRefGoogle Scholar
  129. 129.
    Sung, L. Y., Lo, W. H., Chiu, H. Y., Chen, H. C., Chung, C. K., Lee, H. P., & Hu, Y. C. (2007). Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression. Biomaterials, 28, 3437–3447.PubMedCrossRefGoogle Scholar
  130. 130.
    Sung, L. Y., Chiu, H. Y., Chen, H. C., Chen, Y. L., Chuang, C. K., & Hu, Y. C. (2009). Baculovirus-mediated growth factor expression in dedifferentiated chondrocytes accelerates redifferentiation: Effects of combinational transduction. Tissue Engineering Part A, 15, 1353–1362.PubMedCrossRefGoogle Scholar
  131. 131.
    Lin, C. Y., Chang, Y. H., Kao, C. Y., Lu, C. H., Sung, L. Y., Yen, T. C., Lin, K. J., & Hu, Y. C. (2012). Augmented healing of critical-size calvarial defects by baculovirus-engineered MSCs that persistently express growth factors. Biomaterials, 33, 3682–3692.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biological Sciences, College of Agriculture, Human and Natural SciencesTennessee State UniversityNashvilleUSA

Personalised recommendations