Advertisement

Cold Adaptation Responses in Insects and Other Arthropods: An “Omics” Approach

  • Jelena Purać
  • Danijela Kojić
  • Edward Petri
  • Željko D. Popović
  • Gordana Grubor-Lajšić
  • Duško P. Blagojević
Chapter
Part of the Entomology in Focus book series (ENFO, volume 4)

Abstract

In this chapter, we review recent genomic, proteomic, and metabolomic studies that link several gene and protein products involved in cold adaptation in insects and other arthropods to energy metabolism and cellular protection mechanisms. Organisms have evolved various mechanisms for survival at subfreezing temperatures. In general, cold hardy invertebrates utilize four main strategies to survive cold temperatures: (1) freeze tolerance, (2) freeze avoidance, (3) cryoprotective dehydration, and (4) vitrification. In addition, many insects in temperate regions overwinter in an arrested developmental state known as diapause, during which they are cold hardy. Major alterations occur during winter diapause, with respect to both total metabolic flux and the relative activities of different metabolic pathways. In these organisms, one such metabolic adaptation to unfavorably cold environmental conditions is the synthesis of cryoprotectants/anhydroprotectants. The metabolic changes and metabolic paths involved in cold adaptation suggest involvement of specific enzymes and key regulatory proteins. These mechanisms of cold adaptation require precise scheduling of the expression of specific genes. Thus, we discuss here the evidence researchers have recently begun to gather supporting a relationship between the genes and proteins of the cold adaptation response and mechanisms of cellular protection and energy metabolism using an “omics” approach.

Keywords

Cold Acclimation Cold Tolerance Suppression Subtractive Hybridization Cold Hardiness Cold Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ADS

Antioxidant defense system

AFP

Antifreeze protein

CDMC

Canadian Drosophila Microarray Centre

CLT

Constant low temperature

CS

Cold shock

2DE

Two-dimensional gel electrophoresis

2DE-DIGE

Two-dimensional fluorescence difference gel electrophoresis

EST

Expressed sequence tag

GC–MS

Gas chromatography–mass spectrometry

GlyP

Glycogen phosphorylase

GO

Gene Ontology

HSP

Heat shock protein

INP

Ice-nucleating protein

iTRAQ

Isobaric tag for relative and absolute quantitation

LC–MS

Liquid chromatography–mass spectrometry

LC-MS/MS

Liquid chromatography–tandem mass spectrometry

NCBI

National Center for Biotechnology Information

NMR

Nuclear magnetic resonance

Q-PCR

Quantitative polymerase chain reaction

RCH

Rapid cold hardening

SSH

Suppression subtractive hybridization

Notes

Acknowledgments

This study was supported by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia, project No 173014B: “Molecular mechanisms of redox signaling in homeostasis: adaptation and pathology.”

References

  1. 1.
    Kojić, D., Purać, J., Popović, Ž. D., Pamer, E., & Grubor-Lajšić, G. (2010). Importance of the body water management for winter cold survival of the European corn borer Ostrinia nubilalis Hübn (Lepidoptera: Pyralidae). Biotechnology & Biotechnological Equipment, 24, 648–654.CrossRefGoogle Scholar
  2. 2.
    Denlinger, D. L., & Lee, R. E., Jr. (2010). Low temperature biology of insects. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. 3.
    Purać, J., Pond, D. W., Grubor-Lajšić, G., Kojić, D., Blagojević, D. P., Worland, M. R., & Clark, M. S. (2011). Cold hardening induces transfer of fatty acids between polar and nonpolar lipid pools in the Arctic collembollan Megaphorura arctica. Physiological Entomology, 36(2), 135–140.CrossRefGoogle Scholar
  4. 4.
    Vukašinović, E., Pond, D., Worland, M., Kojić, D., Purać, J., Blagojević, D. P., & Grubor-Lajšić, G. (2013). Diapause induces changes in the composition and biophysical properties of lipids in larvae of the European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 156(4), 219–225.Google Scholar
  5. 5.
    Vukašinović, E., Pond, D., Worland, M., Kojić, D., Purać, J., Popović, Ž. D., & Grubor-Lajšić, G. (2015). Diapause induces remodeling of the fatty acid composition of membrane and storage lipids in overwintering larvae of Ostrinia nubilalis, Hübn. (Lepidoptera: Crambidae). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 184, 36–43.CrossRefGoogle Scholar
  6. 6.
    Jovanović-Galović, A., Blagojević, D. P., Grubor-Lajšić, G., Worland, R., & Spasić, M. B. (2004). Role of antioxidant defense during different stages of preadult life cycle in European corn borer (Ostrinia nubilalis, Hübn.): Diapause and metamorphosis. Archives of Insect Biochemistry and Physiology, 55(2), 79–89.CrossRefPubMedGoogle Scholar
  7. 7.
    Kojić, D., Spasojević, I., Mojović, M., Blagojević, D. P., Worland, M. R., Grubor-Lajsić, G., & Spasić, M. B. (2009). Potential role of hydrogen peroxide and melanin in the cold hardiness of Ostrinia nubilalis (Lepidoptera: Pyralidae). European Journal of Entomology, 106(3), 451–454.CrossRefGoogle Scholar
  8. 8.
    Popović, Ž. D., Subotić, A., Nikolić, T. V., Radojičić, R., Blagojević, D. P., Grubor-Lajšić, G., & Koštál, V. (2015). Expression of stress-related genes in diapause of European corn borer (Ostrinia nubilalis Hbn.). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 186, 1–7.CrossRefGoogle Scholar
  9. 9.
    Adams, M. D., et al. (2000). The genomic sequence of Drosophila melanogaster. Science, 287, 2185–2195.CrossRefPubMedGoogle Scholar
  10. 10.
    Richards, S. et al. (2005). Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Res, 15(1), 1–18.Google Scholar
  11. 11.
    Stark, A., et al. (2007). Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 450(7167), 219–232.Google Scholar
  12. 12.
    Levine, R. (2011). i5k-The 5000 insect genome project. American Entomologist, 57(2), 110–113.CrossRefGoogle Scholar
  13. 13.
    Arensburger, P., et al. (2010). Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science, 333, 86–88.Google Scholar
  14. 14.
    Xia, Q., et al. (2004). A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306, 1937–1940.CrossRefPubMedGoogle Scholar
  15. 15.
    Mita, K., et al. (2004). The genome sequence of silkworm, Bombyx mori. DNA Research, 11, 27–35.CrossRefPubMedGoogle Scholar
  16. 16.
    The International Aphid Genomics Consortium. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology, 8(2), e1000313.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Richards, S., et al. (2008). The genome of the model beetle and pest Tribolium castaneum. Nature, 452, 949–95510.CrossRefPubMedGoogle Scholar
  18. 18.
    Storey, K. B., & Storey, J. M. (2012). Insect cold hardiness: Recent advances in metabolic, gene and protein adaptation. Canadian Journal of Zoology, 90, 456–475.Google Scholar
  19. 19.
    Carrasco, M. A., Tan, J. C., & Duman, J. G. (2011). A cross-species compendium of proteins/gene products related to cold stress identified by bioinformatic approaches. Journal of Insect Physiology, 57(8), 1127–1135.CrossRefPubMedGoogle Scholar
  20. 20.
    Lee, R. E., Jr., & Denlinger, D. L. (2010). Rapid cold-hardening: Ecological significance and underpinning mechanisms. In D. L. Denlinger & R. E. Lee Jr. (Eds.), Low temperature biology of insects. New York: Cambridge University Press.Google Scholar
  21. 21.
    Koštál, V., Berko, P., & Šimek, P. (2003). Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comparative Biochemistry and Physiology – Part B, 135(3), 407–419.CrossRefGoogle Scholar
  22. 22.
    Goto, S. G. (2000). Expression of Drosophila homologue of senescence marker protein-30 during cold acclimation. Journal of Insect Physiology, 46(7), 1111–1120.CrossRefPubMedGoogle Scholar
  23. 23.
    Goto, S. G. (2001). A novel gene that is up-regulated during recovery from cold shock in Drosophila melanogaster. Gene, 270(1–2), 259–264.CrossRefPubMedGoogle Scholar
  24. 24.
    Qin, W., Neal, S. J., Robertson, R. M., Westwood, J. T., & Walker, V. K. (2005). Cold hardening and transcriptional change in Drosophila melanogaster. Insect Molecular Biology, 14(6), 607–613.CrossRefPubMedGoogle Scholar
  25. 25.
    Sorensen, J. G., Nielsen, M. M., & Loeschcke, V. (2007). Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. Journal of Evolutionary Biology, 20, 1624–1636.CrossRefPubMedGoogle Scholar
  26. 26.
    Telonis-Scott, M., Hallas, R., McKechnie, S. W., Wee, C. W., & Hoffmann, A. A. (2009). Selection for cold resistance alters gene transcript levels in Drosophila melanogaster. Journal of Insect Physiology, 55(6), 549–555.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang, J., Marshall, K. E., Westwood, J. T., Clark, M. S., & Sinclair, B. J. (2011). Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. The Journal of Experimental Biology, 214(23), 4021–4029.CrossRefPubMedGoogle Scholar
  28. 28.
    Storey, K. B., & McMullen, D. C. (2004). Insect cold hardiness: new advances using gene-screening technology. In: B. M. Barnes & H. V. (Eds.), Life in the cold: Evolution, mechanisms, adaptation, and application (Biological papers of the University of Alaska, Vol. 27, pp. 275–281). Fairbanks: University of Alaska.Google Scholar
  29. 29.
    Holden, K. A., & Storey, K. B. (2011). Reversible phosphorylation regulation of NADPH-linked polyol dehydrogenase in the freeze-avoiding gall moth, Epiblema scudderiana: Role in glycerol metabolism. Archives of Insect Biochemistry and Physiology, 77(1), 32–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Laayouni, H., García-Franco, F., Chávez-Sandoval, B. E., Trotta, V., Beltran, S., Corominas, M., & Santos, M. (2007). Thermal evolution of gene expression profiles in Drosophila subobscura. BMC Evolutionary Biology, 7(1), 42.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Teets, N. M., Peyton, J. T., Ragland, G. J., Colinet, H., Renault, D., Hahn, D. A., & Denlinger, D. L. (2012). Combined transcriptomic and metabolomics approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiological Genomics, 44(15), 764–777.CrossRefPubMedGoogle Scholar
  32. 32.
    Vesala, L., Salminen, T. S., Laiho, A., Hoikkala, A., & Kankare, M. (2011). Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions. Insect Molecular Biology, 21(1), 107–118.CrossRefPubMedGoogle Scholar
  33. 33.
    Courteau, L. A., Storey, K. B., & Morin, P., Jr. (2012). Differential expression of microRNA species in a freeze tolerant insect, Eurosta solidaginis. Cryobiology, 65(3), 210–214.CrossRefPubMedGoogle Scholar
  34. 34.
    Robich, R. M., Rinehart, J. P., Kitchen, L. J., & Denlinger, D. L. (2007). Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. Journal of Insect Physiology, 53(3), 235–245.CrossRefPubMedGoogle Scholar
  35. 35.
    Rinehart, J. P., Li, A. Q., Yocum, G. D., Robich, R. M., Hayward, S. A. L., & Denlinger, D. L. (2007). Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proceedings of the National Academy of Sciences of the United States of America, 104, 1130–11137.CrossRefGoogle Scholar
  36. 36.
    Rinehart, J. P., Robich, R. M., & Denlinger, D. L. (2010). Isolation of diapause-regulated genes from the flesh fly Sarcophaga crassipalpis by suppressive subtractive hybridization. Journal of Insect Physiology, 56(6), 603–609.CrossRefPubMedGoogle Scholar
  37. 37.
    Hahn, D. A., Ragland, G. J., Shoemaker, D. D., & Denlinger, D. L. (2009). Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis. BMC Genomics, 10(1), 234.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Ragland, G. J., Denlinger, D. L., & Hahn, D. A. (2010). Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14909–14914.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Kankare, M., Salminen, T., Laiho, A., Vesala, L., & Hoikkala, A. (2010). Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: A candidate gene microarray study. BMC Ecology, 10(1), 3.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Worland, M. R., & Convey, P. (2001). Rapid cold-hardening in Antarctic microarthropods. Functional Ecology, 15, 515–524.CrossRefGoogle Scholar
  41. 41.
    Purać, J., Burns, G., Thorne, M., Grubor-Lajšić, G., Worland, R., & Clark, M. (2008). Cold hardening processes in the Antarctic springtail Cryptopygus antarcticus: Clues from a microarray. Journal of Insect Physiology, 54, 1356–1362.CrossRefPubMedGoogle Scholar
  42. 42.
    Burns, G., Thorne, M. A. S., Hillyard, G., Clark, S., Convey, P., & Worland, M. R. (2009). Gene expression associated with changes in cold tolerance levels of the Antarctic springtail, Cryptopygus antarcticus. Insect Molecular Biology, 19(1), 113–120.CrossRefPubMedGoogle Scholar
  43. 43.
    Worland, M. R., & Convey, P. (2008). The significance of the moult cycle to cold tolerance in the Antarctic collembolan Cryptopygus antarcticus. Journal of Insect Physiology, 54(8), 1281–1285.CrossRefPubMedGoogle Scholar
  44. 44.
    Holmstrup, M., & Sømme, L. (1998). Dehydration and cold hardiness in the arctic collembolan Onychiurus arcticus Tullberg 1876. Journal of Comparative Physiology B, 168, 197–203.CrossRefGoogle Scholar
  45. 45.
    Worland, M. R., Grubor-Lajsic, G., & Montiel, P. O. (1998). Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the arctic collembolan Onychiurus arcticus (Tullberg). Journal of Insect Physiology, 44, 211–219.CrossRefPubMedGoogle Scholar
  46. 46.
    Worland, M. R., Grubor-Lajšić, G., Purać, J., Thorne, M. A. S., & Clark, M. S. (2010). Cryoprotective dehydration: Clues from an insect. In: E. Lubzens, J. Cerda & M. Clark (Eds.), Dormancy and resistance in harsh environments (Topics in current genetics, Vol. 21/2010, pp. 147–163). Berlin/Heidelberg: Springer.Google Scholar
  47. 47.
    Popović, Ž., Purać, J., Kojić, D., Pamer, E., Worland, M., Blagojević, D. P., & Grubor-Lajšić, G. (2011). LEA protein expression during cold-induced dehydration in the Arctic collembola Mehaphorura arctica. Archives of Biological Science, 63(3), 681–683.CrossRefGoogle Scholar
  48. 48.
    Clark, M. S., Thorne, M. A. S., Purać, J., Grubor-Lajšić, G., Kube, M., Reinhardt, R., & Worland, M. R. (2007). Surviving extreme polar winters by desiccation: clues from arctic springtail (Onychiurus arcticus) EST libraries. BMC Genomics, 8, 475.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Clark, M. S., Thorne, M. A. S., Purać, J., Burns, G., Hillyard, G., Popović, Z., Grubor-Lajšić, G., & Worland, M. R. (2009). Surviving the cold: molecular analyses of insect cryoprotective dehydration in the arctic springtail (Megaphorura arctica). BMC Genomics, 10, 328.CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Duman, J. G. (2001). Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology, 63(1), 327–357.CrossRefPubMedGoogle Scholar
  51. 51.
    Ring, R. A., & Danks, H. (1994). Desiccation and cryoprotection: Overlapping adaptations. Cryo Letters, 15, 181–190.Google Scholar
  52. 52.
    Block, W. (1996). Cold or drought – The lesser of two evils for terrestrial arthropods? European Journal of Entomology, 93, 325–339.Google Scholar
  53. 53.
    Danks, H. V. (2000). Dehydration in dormant insects. Journal of Insect Physiology, 46, 837–852.CrossRefPubMedGoogle Scholar
  54. 54.
    Hayward, S. A., Rinehart, J. P., Sandro, L. H., Lee, R. E., Jr., & Denlinger, D. L. (2007). Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica. The Journal of Experimental Biology, 210, 836–844.CrossRefPubMedGoogle Scholar
  55. 55.
    Elnitsky, M. A., Hayward, S. A. L., Rinehart, J., Denlinger, D. L., & Lee, R. E., Jr. (2008). Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. The Journal of Experimental Biology, 211, 524–530.CrossRefPubMedGoogle Scholar
  56. 56.
    Li, A., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M., Lee, R. E., Jr., & Denlinger, D. L. (2009). Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration. Proteomics, 9, 2788–2797.CrossRefPubMedGoogle Scholar
  57. 57.
    Worland, M. R. (1996). The relationship between water content and cold tolerance in the arctic collembolan Onychiurus arcticus (Collembola: Onychiuridae). European Journal of Entomology, 93, 341–348.Google Scholar
  58. 58.
    Thorne, M. A. S., Worland, M. R., Feret, R., Deery, M. J., Lilley, K. S., & Clark, M. S. (2011). Proteomics of cryoprotective dehydration in Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Insect Molecular Biology, 20(3), 303–310.CrossRefPubMedGoogle Scholar
  59. 59.
    Malhotra, J. D., & Kaufman, R. J. (2007). The endoplasmic reticulum and the unfolded protein response. Seminars in Cell and Developmental Biology, 18, 716–731.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Grubor-Lajšić, G., Petri, E. T., Kojić, D., Purać, J., Popović, Ž. D., Worland, R. M., Clark, M. S., Mojović, M., & Blagojević, D. P. (2013). Hydrogen peroxide and ecdysone in the cryoprotective dehydration strategy of Megaphorura arctica (Onychiuridae: Collembola). Archives of Insect Biochemistry and Physiology, 82(2), 59–70.CrossRefPubMedGoogle Scholar
  61. 61.
    Colineta, H., Nguyen, T. T., Cloutier, C., Michaud, D., & Hance, T. (2007). Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochemistry and Molecular Biology, 37, 1177–1188.CrossRefGoogle Scholar
  62. 62.
    Li, A., & Denlinger, D. L. (2008). Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis. Insect Molecular Biology, 17(5), 565–572.CrossRefPubMedGoogle Scholar
  63. 63.
    Yoder, J. A., Benoit, J. B., Denlinger, D. L., & Rivrs, D. B. (2006). Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: Evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. Journal of Insect Physiology, 52, 202–214.CrossRefPubMedGoogle Scholar
  64. 64.
    Pavlides, S. C., Pavlides, S. A., & Tammariello, S. P. (2011). Proteomic and phosphoproteomic profiling during diapause entrance in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 57, 635–644.CrossRefPubMedGoogle Scholar
  65. 65.
    Lee, R. E., Jr., & Denlinger, D. L. (1985). Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiological Entomology, 10(3), 309–315.CrossRefGoogle Scholar
  66. 66.
    Overgaard, J., Sørensen, J. G., Com, E., & Colinet, H. (2014). The rapid cold hardening response of Drosophila melanogaster: Complex regulation across different levels of biological organization. Journal of Insect Physiology, 62, 46–53.CrossRefPubMedGoogle Scholar
  67. 67.
    Sinclair, B. J., Gibbs, A. G., & Roberts, S. P. (2007). Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Molecular Biology, 16, 435–443.CrossRefPubMedGoogle Scholar
  68. 68.
    Misener, S. R., Chen, C.-P., & Walker, V. K. (2001). Cold tolerance and proline metabolic gene expression in Drosophila melanogaster. Journal of Insect Physiology, 47, 393–400.CrossRefPubMedGoogle Scholar
  69. 69.
    Colinet, H., Overgaard, J., Comd, E., & Sørensen, J. G. (2013). Proteomic profiling of thermal acclimation in Drosophila melanogaster. Insect Biochemisry and Molecular Biology, 43, 352–365.CrossRefGoogle Scholar
  70. 70.
    Bonnett, T. R., Robert, J. A., Pitt, C., Fraser, J. D., Keeling, C. I., Bohlmann, J., & Huber, D. P. W. (2012). Global and comparative proteomic profiling of overwintering and developing mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), larvae. Insect Biochemisry and Molecular Biology, 42, 890–901.CrossRefGoogle Scholar
  71. 71.
    Zieske, L. R. (2006). A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. Journal of Experimental Botany, 57(7), 1501–1508.CrossRefPubMedGoogle Scholar
  72. 72.
    Safranyik, L., & Wilson, B. (2006). The mountain pine beetle: A synthesis of biology, management, and impacts on lodgepole pine. Victoria: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.Google Scholar
  73. 73.
    Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trends in Analytical Chemistry, 24, 285–294.CrossRefGoogle Scholar
  74. 74.
    Kopka, J. (2006). Current challenges and developments in GC–MS based metabolite profiling technology. Journal of Biotechnology, 124, 312–322.CrossRefPubMedGoogle Scholar
  75. 75.
    Michaud, M. R., & Denlinger, D. L. (2007). Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): A metabolomic comparison. Journal of Comparative Physiology B, 177(7), 753–763.CrossRefGoogle Scholar
  76. 76.
    Rozsypal, J., Koštál, V., Zahradníčková, H., & Šimek, P. (2013). Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella). PLoS One, 8(4), e61745.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Overgaard, J., Malmendal, A., Sørensen, J. G., Bundy, J. G., Loeschcke, V., Nielsen, N. C., & Holmstrup, M. (2007). Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology, 53(12), 1218–1232.CrossRefPubMedGoogle Scholar
  78. 78.
    Pedersen, K. S., Kristensen, T. N., Loeschcke, V., Petersen, B. O., Duus, J. Ø., Nielsen, N. C., & Malmendal, A. (2008). Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics, 180(2), 1233–1243.CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Vesala, L., Salminen, T. S., Koštál, V., Zahradníčková, H., & Hoikkala, A. (2012). Myo-inositol as a main metabolite in overwintering flies: Seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly. The Journal of Experimental Biology, 215(16), 2891–2897.CrossRefPubMedGoogle Scholar
  80. 80.
    Stanić, B., Jovanović-Galović, A., Blagojević, D. P., Grubor-Lajšić, G., Worland, R., & Spasić, M. B. (2004). Cold hardiness in Ostrinia nubilalis (Lepidoptera:Pyralidae): Glycerol content, hexose monophosphate shunt activity, and antioxidative defense system. European Journal of Entomology, 101(3), 459–466.CrossRefGoogle Scholar
  81. 81.
    Michaud, M. R., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E., Jr., & Denlinger, D. L. (2008). Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. Journal of Insect Physiology, 54(4), 645–655.CrossRefGoogle Scholar
  82. 82.
    Hawes, T. C., Hines, A. C., Viant, M. R., Bale, J. S., Worland, M. R., & Convey, P. (2008). Metabolomic fingerprint of cryo-stress in a freeze tolerant insect. Cryo Letters, 29(6), 505–515.PubMedGoogle Scholar
  83. 83.
    Foray, V., Desouhant, E., Voituron, Y., Larvor, V., Renault, D., Colinet, H., & Gibert, P. (2013). Does cold tolerance plasticity correlate with the thermal environment and metabolic profiles of a parasitoid wasp? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 164(1), 77–83.CrossRefGoogle Scholar
  84. 84.
    Khodayari, S., Moharramipour, S., Larvor, V., Hidalgo, K., & Renault, D. (2013). Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae. PLoS One, 8(1), e54025.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jelena Purać
    • 1
  • Danijela Kojić
    • 1
  • Edward Petri
    • 1
  • Željko D. Popović
    • 1
  • Gordana Grubor-Lajšić
    • 1
  • Duško P. Blagojević
    • 2
  1. 1.Department of Biology and Ecology, Faculty of SciencesUniversity of Novi SadNovi SadRepublic of Serbia
  2. 2.Department for Physiology, Institute for Biological ResearchUniversity of BelgradeBelgradeRepublic of Serbia

Personalised recommendations