Skip to main content

Cold Adaptation Responses in Insects and Other Arthropods: An “Omics” Approach

  • Chapter
  • First Online:
Short Views on Insect Genomics and Proteomics

Abstract

In this chapter, we review recent genomic, proteomic, and metabolomic studies that link several gene and protein products involved in cold adaptation in insects and other arthropods to energy metabolism and cellular protection mechanisms. Organisms have evolved various mechanisms for survival at subfreezing temperatures. In general, cold hardy invertebrates utilize four main strategies to survive cold temperatures: (1) freeze tolerance, (2) freeze avoidance, (3) cryoprotective dehydration, and (4) vitrification. In addition, many insects in temperate regions overwinter in an arrested developmental state known as diapause, during which they are cold hardy. Major alterations occur during winter diapause, with respect to both total metabolic flux and the relative activities of different metabolic pathways. In these organisms, one such metabolic adaptation to unfavorably cold environmental conditions is the synthesis of cryoprotectants/anhydroprotectants. The metabolic changes and metabolic paths involved in cold adaptation suggest involvement of specific enzymes and key regulatory proteins. These mechanisms of cold adaptation require precise scheduling of the expression of specific genes. Thus, we discuss here the evidence researchers have recently begun to gather supporting a relationship between the genes and proteins of the cold adaptation response and mechanisms of cellular protection and energy metabolism using an “omics” approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADS:

Antioxidant defense system

AFP:

Antifreeze protein

CDMC:

Canadian Drosophila Microarray Centre

CLT:

Constant low temperature

CS:

Cold shock

2DE:

Two-dimensional gel electrophoresis

2DE-DIGE:

Two-dimensional fluorescence difference gel electrophoresis

EST:

Expressed sequence tag

GC–MS:

Gas chromatography–mass spectrometry

GlyP:

Glycogen phosphorylase

GO:

Gene Ontology

HSP:

Heat shock protein

INP:

Ice-nucleating protein

iTRAQ:

Isobaric tag for relative and absolute quantitation

LC–MS:

Liquid chromatography–mass spectrometry

LC-MS/MS:

Liquid chromatography–tandem mass spectrometry

NCBI:

National Center for Biotechnology Information

NMR:

Nuclear magnetic resonance

Q-PCR:

Quantitative polymerase chain reaction

RCH:

Rapid cold hardening

SSH:

Suppression subtractive hybridization

References

  1. Kojić, D., Purać, J., Popović, Ž. D., Pamer, E., & Grubor-Lajšić, G. (2010). Importance of the body water management for winter cold survival of the European corn borer Ostrinia nubilalis Hübn (Lepidoptera: Pyralidae). Biotechnology & Biotechnological Equipment, 24, 648–654.

    Article  Google Scholar 

  2. Denlinger, D. L., & Lee, R. E., Jr. (2010). Low temperature biology of insects. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  3. Purać, J., Pond, D. W., Grubor-Lajšić, G., Kojić, D., Blagojević, D. P., Worland, M. R., & Clark, M. S. (2011). Cold hardening induces transfer of fatty acids between polar and nonpolar lipid pools in the Arctic collembollan Megaphorura arctica. Physiological Entomology, 36(2), 135–140.

    Article  Google Scholar 

  4. Vukašinović, E., Pond, D., Worland, M., Kojić, D., Purać, J., Blagojević, D. P., & Grubor-Lajšić, G. (2013). Diapause induces changes in the composition and biophysical properties of lipids in larvae of the European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 156(4), 219–225.

    Google Scholar 

  5. Vukašinović, E., Pond, D., Worland, M., Kojić, D., Purać, J., Popović, Ž. D., & Grubor-Lajšić, G. (2015). Diapause induces remodeling of the fatty acid composition of membrane and storage lipids in overwintering larvae of Ostrinia nubilalis, Hübn. (Lepidoptera: Crambidae). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 184, 36–43.

    Article  Google Scholar 

  6. Jovanović-Galović, A., Blagojević, D. P., Grubor-Lajšić, G., Worland, R., & Spasić, M. B. (2004). Role of antioxidant defense during different stages of preadult life cycle in European corn borer (Ostrinia nubilalis, Hübn.): Diapause and metamorphosis. Archives of Insect Biochemistry and Physiology, 55(2), 79–89.

    Article  PubMed  Google Scholar 

  7. Kojić, D., Spasojević, I., Mojović, M., Blagojević, D. P., Worland, M. R., Grubor-Lajsić, G., & Spasić, M. B. (2009). Potential role of hydrogen peroxide and melanin in the cold hardiness of Ostrinia nubilalis (Lepidoptera: Pyralidae). European Journal of Entomology, 106(3), 451–454.

    Article  Google Scholar 

  8. Popović, Ž. D., Subotić, A., Nikolić, T. V., Radojičić, R., Blagojević, D. P., Grubor-Lajšić, G., & Koštál, V. (2015). Expression of stress-related genes in diapause of European corn borer (Ostrinia nubilalis Hbn.). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 186, 1–7.

    Article  Google Scholar 

  9. Adams, M. D., et al. (2000). The genomic sequence of Drosophila melanogaster. Science, 287, 2185–2195.

    Article  PubMed  Google Scholar 

  10. Richards, S. et al. (2005). Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Res, 15(1), 1–18.

    Google Scholar 

  11. Stark, A., et al. (2007). Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature, 450(7167), 219–232.

    Google Scholar 

  12. Levine, R. (2011). i5k-The 5000 insect genome project. American Entomologist, 57(2), 110–113.

    Article  Google Scholar 

  13. Arensburger, P., et al. (2010). Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science, 333, 86–88.

    Google Scholar 

  14. Xia, Q., et al. (2004). A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306, 1937–1940.

    Article  PubMed  Google Scholar 

  15. Mita, K., et al. (2004). The genome sequence of silkworm, Bombyx mori. DNA Research, 11, 27–35.

    Article  CAS  PubMed  Google Scholar 

  16. The International Aphid Genomics Consortium. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology, 8(2), e1000313.

    Article  PubMed Central  Google Scholar 

  17. Richards, S., et al. (2008). The genome of the model beetle and pest Tribolium castaneum. Nature, 452, 949–95510.

    Article  CAS  PubMed  Google Scholar 

  18. Storey, K. B., & Storey, J. M. (2012). Insect cold hardiness: Recent advances in metabolic, gene and protein adaptation. Canadian Journal of Zoology, 90, 456–475.

    CAS  Google Scholar 

  19. Carrasco, M. A., Tan, J. C., & Duman, J. G. (2011). A cross-species compendium of proteins/gene products related to cold stress identified by bioinformatic approaches. Journal of Insect Physiology, 57(8), 1127–1135.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, R. E., Jr., & Denlinger, D. L. (2010). Rapid cold-hardening: Ecological significance and underpinning mechanisms. In D. L. Denlinger & R. E. Lee Jr. (Eds.), Low temperature biology of insects. New York: Cambridge University Press.

    Google Scholar 

  21. Koštál, V., Berko, P., & Šimek, P. (2003). Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comparative Biochemistry and Physiology – Part B, 135(3), 407–419.

    Article  Google Scholar 

  22. Goto, S. G. (2000). Expression of Drosophila homologue of senescence marker protein-30 during cold acclimation. Journal of Insect Physiology, 46(7), 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  23. Goto, S. G. (2001). A novel gene that is up-regulated during recovery from cold shock in Drosophila melanogaster. Gene, 270(1–2), 259–264.

    Article  CAS  PubMed  Google Scholar 

  24. Qin, W., Neal, S. J., Robertson, R. M., Westwood, J. T., & Walker, V. K. (2005). Cold hardening and transcriptional change in Drosophila melanogaster. Insect Molecular Biology, 14(6), 607–613.

    Article  CAS  PubMed  Google Scholar 

  25. Sorensen, J. G., Nielsen, M. M., & Loeschcke, V. (2007). Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors. Journal of Evolutionary Biology, 20, 1624–1636.

    Article  CAS  PubMed  Google Scholar 

  26. Telonis-Scott, M., Hallas, R., McKechnie, S. W., Wee, C. W., & Hoffmann, A. A. (2009). Selection for cold resistance alters gene transcript levels in Drosophila melanogaster. Journal of Insect Physiology, 55(6), 549–555.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, J., Marshall, K. E., Westwood, J. T., Clark, M. S., & Sinclair, B. J. (2011). Divergent transcriptomic responses to repeated and single cold exposures in Drosophila melanogaster. The Journal of Experimental Biology, 214(23), 4021–4029.

    Article  PubMed  Google Scholar 

  28. Storey, K. B., & McMullen, D. C. (2004). Insect cold hardiness: new advances using gene-screening technology. In: B. M. Barnes & H. V. (Eds.), Life in the cold: Evolution, mechanisms, adaptation, and application (Biological papers of the University of Alaska, Vol. 27, pp. 275–281). Fairbanks: University of Alaska.

    Google Scholar 

  29. Holden, K. A., & Storey, K. B. (2011). Reversible phosphorylation regulation of NADPH-linked polyol dehydrogenase in the freeze-avoiding gall moth, Epiblema scudderiana: Role in glycerol metabolism. Archives of Insect Biochemistry and Physiology, 77(1), 32–44.

    Article  CAS  PubMed  Google Scholar 

  30. Laayouni, H., García-Franco, F., Chávez-Sandoval, B. E., Trotta, V., Beltran, S., Corominas, M., & Santos, M. (2007). Thermal evolution of gene expression profiles in Drosophila subobscura. BMC Evolutionary Biology, 7(1), 42.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Teets, N. M., Peyton, J. T., Ragland, G. J., Colinet, H., Renault, D., Hahn, D. A., & Denlinger, D. L. (2012). Combined transcriptomic and metabolomics approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiological Genomics, 44(15), 764–777.

    Article  CAS  PubMed  Google Scholar 

  32. Vesala, L., Salminen, T. S., Laiho, A., Hoikkala, A., & Kankare, M. (2011). Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions. Insect Molecular Biology, 21(1), 107–118.

    Article  PubMed  Google Scholar 

  33. Courteau, L. A., Storey, K. B., & Morin, P., Jr. (2012). Differential expression of microRNA species in a freeze tolerant insect, Eurosta solidaginis. Cryobiology, 65(3), 210–214.

    Article  CAS  PubMed  Google Scholar 

  34. Robich, R. M., Rinehart, J. P., Kitchen, L. J., & Denlinger, D. L. (2007). Diapause-specific gene expression in the northern house mosquito, Culex pipiens L., identified by suppressive subtractive hybridization. Journal of Insect Physiology, 53(3), 235–245.

    Article  CAS  PubMed  Google Scholar 

  35. Rinehart, J. P., Li, A. Q., Yocum, G. D., Robich, R. M., Hayward, S. A. L., & Denlinger, D. L. (2007). Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proceedings of the National Academy of Sciences of the United States of America, 104, 1130–11137.

    Article  Google Scholar 

  36. Rinehart, J. P., Robich, R. M., & Denlinger, D. L. (2010). Isolation of diapause-regulated genes from the flesh fly Sarcophaga crassipalpis by suppressive subtractive hybridization. Journal of Insect Physiology, 56(6), 603–609.

    Article  CAS  PubMed  Google Scholar 

  37. Hahn, D. A., Ragland, G. J., Shoemaker, D. D., & Denlinger, D. L. (2009). Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis. BMC Genomics, 10(1), 234.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Ragland, G. J., Denlinger, D. L., & Hahn, D. A. (2010). Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14909–14914.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kankare, M., Salminen, T., Laiho, A., Vesala, L., & Hoikkala, A. (2010). Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: A candidate gene microarray study. BMC Ecology, 10(1), 3.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Worland, M. R., & Convey, P. (2001). Rapid cold-hardening in Antarctic microarthropods. Functional Ecology, 15, 515–524.

    Article  Google Scholar 

  41. Purać, J., Burns, G., Thorne, M., Grubor-Lajšić, G., Worland, R., & Clark, M. (2008). Cold hardening processes in the Antarctic springtail Cryptopygus antarcticus: Clues from a microarray. Journal of Insect Physiology, 54, 1356–1362.

    Article  PubMed  Google Scholar 

  42. Burns, G., Thorne, M. A. S., Hillyard, G., Clark, S., Convey, P., & Worland, M. R. (2009). Gene expression associated with changes in cold tolerance levels of the Antarctic springtail, Cryptopygus antarcticus. Insect Molecular Biology, 19(1), 113–120.

    Article  PubMed  Google Scholar 

  43. Worland, M. R., & Convey, P. (2008). The significance of the moult cycle to cold tolerance in the Antarctic collembolan Cryptopygus antarcticus. Journal of Insect Physiology, 54(8), 1281–1285.

    Article  CAS  PubMed  Google Scholar 

  44. Holmstrup, M., & Sømme, L. (1998). Dehydration and cold hardiness in the arctic collembolan Onychiurus arcticus Tullberg 1876. Journal of Comparative Physiology B, 168, 197–203.

    Article  Google Scholar 

  45. Worland, M. R., Grubor-Lajsic, G., & Montiel, P. O. (1998). Partial desiccation induced by sub-zero temperatures as a component of the survival strategy of the arctic collembolan Onychiurus arcticus (Tullberg). Journal of Insect Physiology, 44, 211–219.

    Article  CAS  PubMed  Google Scholar 

  46. Worland, M. R., Grubor-Lajšić, G., Purać, J., Thorne, M. A. S., & Clark, M. S. (2010). Cryoprotective dehydration: Clues from an insect. In: E. Lubzens, J. Cerda & M. Clark (Eds.), Dormancy and resistance in harsh environments (Topics in current genetics, Vol. 21/2010, pp. 147–163). Berlin/Heidelberg: Springer.

    Google Scholar 

  47. Popović, Ž., Purać, J., Kojić, D., Pamer, E., Worland, M., Blagojević, D. P., & Grubor-Lajšić, G. (2011). LEA protein expression during cold-induced dehydration in the Arctic collembola Mehaphorura arctica. Archives of Biological Science, 63(3), 681–683.

    Article  Google Scholar 

  48. Clark, M. S., Thorne, M. A. S., Purać, J., Grubor-Lajšić, G., Kube, M., Reinhardt, R., & Worland, M. R. (2007). Surviving extreme polar winters by desiccation: clues from arctic springtail (Onychiurus arcticus) EST libraries. BMC Genomics, 8, 475.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Clark, M. S., Thorne, M. A. S., Purać, J., Burns, G., Hillyard, G., Popović, Z., Grubor-Lajšić, G., & Worland, M. R. (2009). Surviving the cold: molecular analyses of insect cryoprotective dehydration in the arctic springtail (Megaphorura arctica). BMC Genomics, 10, 328.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Duman, J. G. (2001). Antifreeze and ice nucleator proteins in terrestrial arthropods. Annual Review of Physiology, 63(1), 327–357.

    Article  CAS  PubMed  Google Scholar 

  51. Ring, R. A., & Danks, H. (1994). Desiccation and cryoprotection: Overlapping adaptations. Cryo Letters, 15, 181–190.

    Google Scholar 

  52. Block, W. (1996). Cold or drought – The lesser of two evils for terrestrial arthropods? European Journal of Entomology, 93, 325–339.

    Google Scholar 

  53. Danks, H. V. (2000). Dehydration in dormant insects. Journal of Insect Physiology, 46, 837–852.

    Article  CAS  PubMed  Google Scholar 

  54. Hayward, S. A., Rinehart, J. P., Sandro, L. H., Lee, R. E., Jr., & Denlinger, D. L. (2007). Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica. The Journal of Experimental Biology, 210, 836–844.

    Article  CAS  PubMed  Google Scholar 

  55. Elnitsky, M. A., Hayward, S. A. L., Rinehart, J., Denlinger, D. L., & Lee, R. E., Jr. (2008). Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica. The Journal of Experimental Biology, 211, 524–530.

    Article  PubMed  Google Scholar 

  56. Li, A., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M., Lee, R. E., Jr., & Denlinger, D. L. (2009). Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration. Proteomics, 9, 2788–2797.

    Article  CAS  PubMed  Google Scholar 

  57. Worland, M. R. (1996). The relationship between water content and cold tolerance in the arctic collembolan Onychiurus arcticus (Collembola: Onychiuridae). European Journal of Entomology, 93, 341–348.

    Google Scholar 

  58. Thorne, M. A. S., Worland, M. R., Feret, R., Deery, M. J., Lilley, K. S., & Clark, M. S. (2011). Proteomics of cryoprotective dehydration in Megaphorura arctica Tullberg 1876 (Onychiuridae: Collembola). Insect Molecular Biology, 20(3), 303–310.

    Article  CAS  PubMed  Google Scholar 

  59. Malhotra, J. D., & Kaufman, R. J. (2007). The endoplasmic reticulum and the unfolded protein response. Seminars in Cell and Developmental Biology, 18, 716–731.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Grubor-Lajšić, G., Petri, E. T., Kojić, D., Purać, J., Popović, Ž. D., Worland, R. M., Clark, M. S., Mojović, M., & Blagojević, D. P. (2013). Hydrogen peroxide and ecdysone in the cryoprotective dehydration strategy of Megaphorura arctica (Onychiuridae: Collembola). Archives of Insect Biochemistry and Physiology, 82(2), 59–70.

    Article  PubMed  Google Scholar 

  61. Colineta, H., Nguyen, T. T., Cloutier, C., Michaud, D., & Hance, T. (2007). Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochemistry and Molecular Biology, 37, 1177–1188.

    Article  Google Scholar 

  62. Li, A., & Denlinger, D. L. (2008). Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis. Insect Molecular Biology, 17(5), 565–572.

    Article  PubMed  Google Scholar 

  63. Yoder, J. A., Benoit, J. B., Denlinger, D. L., & Rivrs, D. B. (2006). Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: Evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response. Journal of Insect Physiology, 52, 202–214.

    Article  CAS  PubMed  Google Scholar 

  64. Pavlides, S. C., Pavlides, S. A., & Tammariello, S. P. (2011). Proteomic and phosphoproteomic profiling during diapause entrance in the flesh fly, Sarcophaga crassipalpis. Journal of Insect Physiology, 57, 635–644.

    Article  CAS  PubMed  Google Scholar 

  65. Lee, R. E., Jr., & Denlinger, D. L. (1985). Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiological Entomology, 10(3), 309–315.

    Article  Google Scholar 

  66. Overgaard, J., Sørensen, J. G., Com, E., & Colinet, H. (2014). The rapid cold hardening response of Drosophila melanogaster: Complex regulation across different levels of biological organization. Journal of Insect Physiology, 62, 46–53.

    Article  CAS  PubMed  Google Scholar 

  67. Sinclair, B. J., Gibbs, A. G., & Roberts, S. P. (2007). Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Molecular Biology, 16, 435–443.

    Article  CAS  PubMed  Google Scholar 

  68. Misener, S. R., Chen, C.-P., & Walker, V. K. (2001). Cold tolerance and proline metabolic gene expression in Drosophila melanogaster. Journal of Insect Physiology, 47, 393–400.

    Article  CAS  PubMed  Google Scholar 

  69. Colinet, H., Overgaard, J., Comd, E., & Sørensen, J. G. (2013). Proteomic profiling of thermal acclimation in Drosophila melanogaster. Insect Biochemisry and Molecular Biology, 43, 352–365.

    Article  CAS  Google Scholar 

  70. Bonnett, T. R., Robert, J. A., Pitt, C., Fraser, J. D., Keeling, C. I., Bohlmann, J., & Huber, D. P. W. (2012). Global and comparative proteomic profiling of overwintering and developing mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), larvae. Insect Biochemisry and Molecular Biology, 42, 890–901.

    Article  CAS  Google Scholar 

  71. Zieske, L. R. (2006). A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. Journal of Experimental Botany, 57(7), 1501–1508.

    Article  CAS  PubMed  Google Scholar 

  72. Safranyik, L., & Wilson, B. (2006). The mountain pine beetle: A synthesis of biology, management, and impacts on lodgepole pine. Victoria: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre.

    Google Scholar 

  73. Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trends in Analytical Chemistry, 24, 285–294.

    Article  CAS  Google Scholar 

  74. Kopka, J. (2006). Current challenges and developments in GC–MS based metabolite profiling technology. Journal of Biotechnology, 124, 312–322.

    Article  CAS  PubMed  Google Scholar 

  75. Michaud, M. R., & Denlinger, D. L. (2007). Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): A metabolomic comparison. Journal of Comparative Physiology B, 177(7), 753–763.

    Article  CAS  Google Scholar 

  76. Rozsypal, J., Koštál, V., Zahradníčková, H., & Šimek, P. (2013). Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella). PLoS One, 8(4), e61745.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Overgaard, J., Malmendal, A., Sørensen, J. G., Bundy, J. G., Loeschcke, V., Nielsen, N. C., & Holmstrup, M. (2007). Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology, 53(12), 1218–1232.

    Article  CAS  PubMed  Google Scholar 

  78. Pedersen, K. S., Kristensen, T. N., Loeschcke, V., Petersen, B. O., Duus, J. Ø., Nielsen, N. C., & Malmendal, A. (2008). Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics, 180(2), 1233–1243.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Vesala, L., Salminen, T. S., Koštál, V., Zahradníčková, H., & Hoikkala, A. (2012). Myo-inositol as a main metabolite in overwintering flies: Seasonal metabolomic profiles and cold stress tolerance in a northern drosophilid fly. The Journal of Experimental Biology, 215(16), 2891–2897.

    Article  CAS  PubMed  Google Scholar 

  80. Stanić, B., Jovanović-Galović, A., Blagojević, D. P., Grubor-Lajšić, G., Worland, R., & Spasić, M. B. (2004). Cold hardiness in Ostrinia nubilalis (Lepidoptera:Pyralidae): Glycerol content, hexose monophosphate shunt activity, and antioxidative defense system. European Journal of Entomology, 101(3), 459–466.

    Article  Google Scholar 

  81. Michaud, M. R., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E., Jr., & Denlinger, D. L. (2008). Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. Journal of Insect Physiology, 54(4), 645–655.

    Article  Google Scholar 

  82. Hawes, T. C., Hines, A. C., Viant, M. R., Bale, J. S., Worland, M. R., & Convey, P. (2008). Metabolomic fingerprint of cryo-stress in a freeze tolerant insect. Cryo Letters, 29(6), 505–515.

    CAS  PubMed  Google Scholar 

  83. Foray, V., Desouhant, E., Voituron, Y., Larvor, V., Renault, D., Colinet, H., & Gibert, P. (2013). Does cold tolerance plasticity correlate with the thermal environment and metabolic profiles of a parasitoid wasp? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 164(1), 77–83.

    Article  CAS  Google Scholar 

  84. Khodayari, S., Moharramipour, S., Larvor, V., Hidalgo, K., & Renault, D. (2013). Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae. PLoS One, 8(1), e54025.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia, project No 173014B: “Molecular mechanisms of redox signaling in homeostasis: adaptation and pathology.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duško P. Blagojević PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Purać, J., Kojić, D., Petri, E., Popović, Ž.D., Grubor-Lajšić, G., Blagojević, D.P. (2016). Cold Adaptation Responses in Insects and Other Arthropods: An “Omics” Approach. In: Raman, C., Goldsmith, M., Agunbiade, T. (eds) Short Views on Insect Genomics and Proteomics. Entomology in Focus, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-24244-6_4

Download citation

Publish with us

Policies and ethics