Skip to main content

Lepidopteran Peritrophic Matrix Composition, Function, and Formation

  • Chapter
  • First Online:
Short Views on Insect Genomics and Proteomics

Part of the book series: Entomology in Focus ((ENFO,volume 4))

Abstract

Lepidopteran larvae possess a robust digestive system featuring a multitude of hydrolytic enzymes that are able to accommodate an often highly polyphagous diet. Additional digestive complexity arises from the peritrophic matrix (PM) which encases the food bolus and compartmentalizes digestive processes. This review focuses on genomic and proteomic studies from several species that have identified what is likely to be the entire complement of proteins associated with the lepidopteran PM. In the process, a basal set of structural proteins common to the lepidopteran PM is described, and the roles of these proteins in PM structure and function are discussed. Finally, updated models for PM molecular architecture and formation which incorporate information about recently discovered proteins are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

alkaline phosphatase

AMY:

amylase

AST:

astacin

CBD:

chitin-binding domain

CDA:

chitin deacetylase

CHI:

endo-chitinase

CHS-2:

chitin synthase 2

CLECT:

C-type lectin

CBP:

chitin-binding protein

Ek:

Ephestia kuehniella

GlcNAc:

N-acetylglucosamine

GPI:

glycosylphosphatidylinositol

β1,3GLU:

β-1,3-glucanase

Ha:

Helicoverpa armigera

IIL:

insect intestinal lipase

IIM:

insect intestinal mucin

Lsti:

Loxostege sticticalis

mRNA:

messenger RNA

Mc:

Mamestra configurata

MD:

mucin domain

NAG:

N-acetylglucosaminidase

On:

Ostrinia nubilalis

PAD:

peritrophin-A domain

PBD:

peritrophin-B domain

PCD:

peritrophin-C domain

PM:

peritrophic matrix

REPAT:

response to pathogen

RNA:

ribonucleic acid

Se:

Spodoptera exigua

Tn:

Trichoplusia ni

References

  1. Lyonet, P. (1762). Traité Anatomique de la Chenille. La Haye: Grosse Pinet.

    Google Scholar 

  2. Balbiani, E. G. (1890). Études anatomiques et histologiques sur le tube digestif des Crytops. Archives of Zoological Experimental Genome, 8, 1–82.

    Google Scholar 

  3. Peters, W. (1992). Peritrophic membranes. In D. Bradshaw, W. Burggren, H.C. Heller, S. Ishii, H. Langer, G. Neuweiler & D. J. Randall (Eds.), Zoophysiology (Vol. 130). Berlin: Springer.

    Google Scholar 

  4. Vignon, P. (1901). Recherches sur les épithéliums. Archives of Zoological Experimental Genome Series, 3(9), 371–715.

    Google Scholar 

  5. Wigglesworth, V. B. (1930). The formation of the peritrophic membrane in insects, with special reference to the larvae of mosquitoes. Quarterly. Journal of Microscopical Science, 73, 583–616.

    Google Scholar 

  6. Waterhouse, D. F. (1957). Digestion in insects. Annual Review of Entomology, 2, 1–18.

    Article  Google Scholar 

  7. Bolognesi, R., Terra, W. R., & Ferreira, C. (2008). Peritrophic membrane role in enhancing digestive efficiency: Theoretical and experimental models. Journal of Insect Physiology, 54, 1413–1422.

    Article  CAS  PubMed  Google Scholar 

  8. Tellam, R. L. (1996). The peritrophic matrix. In M. J. Lehane & P. F. Billingsley (Eds.), Biology of the insect midgut (pp. 86–114). London: Chapman and Hall.

    Chapter  Google Scholar 

  9. Lehane, M. J. (1997). Peritrophic matrix structure and function. Annual Review of Entomology, 42, 525–550.

    Article  CAS  PubMed  Google Scholar 

  10. Terra, W. R. (2001). The origin and functions of the insect peritrophic membrane and peritrophic gel. Archives of Insect Biochemistry and Physiology, 47, 47–61.

    Article  CAS  PubMed  Google Scholar 

  11. Hegedus, D., Erlandson, M., Gillott, C., & Toprak, U. (2009). New insights into peritrophic matrix synthesis, architecture, and function. Annual Review of Entomology, 54, 285–302.

    Article  CAS  PubMed  Google Scholar 

  12. Toprak, U., Erlandson, M., & Hegedus, D. D. (2010). Peritrophic matrix proteins. Trends in Entomology, 6, 23–51.

    Google Scholar 

  13. Elvin, C. M., Vuocolo, T., Pearson, R. D., East, I. J., Riding, G. A., Eisemann, C. H., & Tellam, R. L. (1996). Characterization of a major peritrophic membrane protein, Peritrophin-44, from the larvae of Lucilia cuprina. The Journal of Biological Chemistry, 271, 8925–8935.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, P., & Granados, R. R. (2001). Molecular structure of the peritrophic membrane (PM): Identification of potential PM target sites for insect control. Archives of Insect Biochemistry and Physiology, 47, 110–118.

    Article  CAS  PubMed  Google Scholar 

  15. Toprak, U., Erlandson, M., & Hegedus, D. D. (2015) Identification of the Mamestra configurata (Lepidoptera:Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. Insect Science, Epub ahead of print (doi: 10.1111/1744-7917.12225).

    Google Scholar 

  16. Mercer, E. H., & Day, M. F. (1952). The fine structure of the peritrophic membranes of certain insects. The Biological Bulletin, 103, 384–394.

    Article  Google Scholar 

  17. Toprak, U., Baldwin, D., Erlandson, M., Gillott, C., Hou, X., Coutu, C., & Hegedus, D. D. (2008). A chitin deacetylase and putative insect intestinal lipases are integral components of Mamestra configurata peritrophic matrix. Insect Molecular Biology, 17, 573–585.

    Article  CAS  PubMed  Google Scholar 

  18. Cohen, E. (2010). Chitin biochemistry: Synthesis, hydrolysis and inhibition. Advances in Insect Physiology, 38, 5–74.

    Article  Google Scholar 

  19. Tellam, R. L., Wijffels, G., & Willadsen, P. (1999). Peritrophic matrix proteins. Insect Biochemistry and Molecular Biology, 29, 87–101.

    Article  CAS  PubMed  Google Scholar 

  20. Lehane, M. J., Aksoy, S., Gibson, W., Kerhornou, A., Berriman, M., Hamilton, J., Soares, M. B., Bonaldo, M. F., Lehane, S., & Hall, N. (2003). Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans morsitans and expression analysis of putative immune response genes. Genome Biology, 4, R63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi, X., Chamankhah, M., Visal-Shah, S., Hemmingsen, S. M., Erlandson, M., Braun, L., Alting-Mees, M., Khachatourians, G. G., O’Grady, M., & Hegedus, D. D. (2004). Modeling the structure of the Type I peritrophic matrix: Characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin-binding domains. Insect Biochemistry and Molecular Biology, 34, 1101–1115.

    Article  CAS  PubMed  Google Scholar 

  22. Simpson, R. M., Newcomb, R. D., Gatehouse, H. S., Crowhurst, R. N., Chagné, D., Gatehouse, L. N., Markwick, N. P., Beuning, L. L., Murray, C., Marshall, S. D., Yauk, Y.-K., Nain, B., Wang, Y.-Y., Gleave, A. P., & Christeller, J. T. (2007). Expressed sequence tags from the midgut of Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae). Insect Molecular Biology, 16, 675–690.

    Article  CAS  PubMed  Google Scholar 

  23. Ramalho-Ortigao, M., Jochim, R. C., Anderson, J. M., Lawyer, P. G., Pham, V.-M., Kamhawi, S., & Valenzuela, J. G. (2007). Exploring the midgut transcriptome of Phlebotomus papatasi: Comparative analysis of expression profiles of sugar-fed, blood-fed and Leishmania major-infected sandflies. BMC Genomics, 8, 300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jochim, R. C., Teixeira, C. R., Laughinghouse, A., Mu, J., Oliveira, F., Gomes, R. B., Elnaiem, D.-E., & Valenzuela, J. G. (2008). The midgut transcriptome of Lutzomyia longipalpis: Comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies. BMC Genomics, 9, 15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris, K., Lorenzen, M. D., Hiromasa, Y., Tomich, J. M., Oppert, C., Elpidina, E. N., Vinokurov, K., Jurat-Fuentes, J. L., Fabrick, J., & Oppert, B. (2009). Tribolium castaneum larval gut transcriptome and proteome: A resource for the study of the coleopteran gut. Journal of Proteome Research, 8, 3889–3898.

    Article  CAS  PubMed  Google Scholar 

  26. Pauchet, Y., Wilkinson, P., van Munster, M., Augustin, S., Pauron, D., & ffrench-Constant, R. H. (2009). Pyrosequencing of the midgut transcriptome of the poplar leaf beetle Chrysomela tremulae reveals new gene families in Coleoptera. Insect Biochemistry and Molecular Biology, 39, 403–413.

    Article  CAS  PubMed  Google Scholar 

  27. Venancio, T. M., Cristofoletti, P. T., Ferreira, C., Verjovski-Almeida, S., & Terra, W. R. (2009). The Aedes aegypti larval transcriptome: A comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Molecular Biology, 18, 33–44.

    Article  CAS  PubMed  Google Scholar 

  28. Pauchet, Y., Wilkinson, P., Vogel, H., Nelson, D. R., Reynolds, S. E., Heckel, D. G., & French-Constant, R. H. (2010). Pyrosequencing the Manduca sexta larval midgut transcriptome: Messages for digestion, detoxification and defence. Insect Molecular Biology, 19, 61–75.

    Article  CAS  PubMed  Google Scholar 

  29. Ferreira, A. H. P., Cristofoletti, P. T., Lorenzinic, D. M., Guerra, L. O., Paiva, P. B., Briones, M. R. S., Terra, W. R., & Ferreira, C. (2007). Identification of midgut microvillar proteins from Tenebrio molitor and Spodoptera frugiperda by cDNA library screenings with antibodies. Journal of Insect Physiology, 53, 1112–1124.

    Article  CAS  PubMed  Google Scholar 

  30. Campbell, P. M., Cao, A. T., Hines, E. R., East, P. D., & Gordon, K. H. J. (2008). Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 38, 950–958.

    Article  CAS  PubMed  Google Scholar 

  31. Pauchet, Y., Muck, A., Svatos, A., Heckel, D. G., & Preiss, S. (2008). Mapping the larval midgut lumen proteome of Helicoverpa armigera, a generalist herbivorous insect. Journal of Proteome Research, 7, 1629–1639.

    Article  CAS  PubMed  Google Scholar 

  32. Dinglasan, R. R., Devenport, M., Florens, L., Johnson, J. R., McHugh, C. A., Donnelly-Doman, M., Carucci, D. J., Yates, J. R. I. I. I., & Jacobs-Lorena, M. (2009). The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochemistry and Molecular Biology, 39, 125–134.

    Article  CAS  PubMed  Google Scholar 

  33. Liu, J., Zheng, S., Liu, L., & Feng, Q. (2010). Protein profiles of the midgut of Spodoptera litura larvae at the sixth instar feeding stage by shotgun ESI-MS approach. Journal of Proteome Research, 9, 2117–2147.

    Article  CAS  PubMed  Google Scholar 

  34. Hu, X., Chen, L., Xiang, X., Yang, R., Yu, S., & Wu, X. (2012). Proteomic analysis of peritrophic membrane (PM) from the midgut of fifth-instar larvae, Bombyx mori. Molecular Biology Reports, 39, 3427–3434.

    Article  CAS  PubMed  Google Scholar 

  35. Zhong, X., Zhang, L., Zou, Y., Yi, Q., & Zhao, P. (2012). Shotgun analysis on the peritrophic membrane of the silkworm Bombyx mori. BMB Reports, 45, 665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rose, C., Belmonte, R., Armstrong, S. D., Molyneux, G., Haines, L. R., Lehane, M. J., Wastling, J., & Acosta-Serrano, A. (2014). An investigation into the protein composition of the teneral Glossina morsitans morsitans peritrophic matrix. PLoS Neglected Tropical Diseases, 8, e2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, P., & Granados, R. R. (1997). Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. The Journal of Biological Chemistry, 272, 16663–16669.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, P., & Granados, R. R. (1997). An intestinal mucin is the target substrate for a baculovirus enhancin. Proceedings of the National Academy of Sciences of the United States of America, 94, 6977–6982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tetreau, G., Dittmer, N. T, Cao, X., Agrawal, S., Chen, Y., Muthukrishnan, S., Haobo, J., Blissard, G. W., Kanost, M. R., & Wang, P. (2015). Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochemistry and Molecular Biology. doi: 10.1016/j.ibmb.2014.12.002. [Epub ahead of print]

    Google Scholar 

  40. Toprak, U., Baldwin, D., Erlandson, M., Gillott, C., Harris, S., & Hegedus, D. D. (2010). Expression patterns of genes encoding proteins with peritrophin A domains and protein localization in Mamestra configurata. Journal of Insect Physiology, 56, 1711–1720.

    Article  CAS  PubMed  Google Scholar 

  41. Wijffels, G., Eisemann, C., Riding, G., Pearson, R., Jones, A., Willadsen, P., & Tellam, R. (2001). A novel family of chitin-binding proteins from insect type 2 peritrophic matrix: cDNA sequences, chitin binding activity, and cellular localization. The Journal of Biological Chemistry, 276, 15527–15536.

    Article  CAS  PubMed  Google Scholar 

  42. Weiss, B. L., Savage, A. F., Griffith, B. C., Wu, Y., & Aksoy, S. (2014). The peritrophic matrix mediates differential infection outcomes in the tsetse fly gut following challenge with commensal, pathogenic, and parasitic microbes. The Journal of Immunology, 193, 773–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Toprak, U., Harris, S., Baldwin, D., Theilmann, D., Gillott, C., Hegedus, D. D., & Erlandson, M. (2012). Role of enhancin in Mamestra configurata nucleopolyhedrovirus virulence: Selective degradation of host peritrophic matrix proteins. The Journal of General Virology, 93, 744–753.

    Article  CAS  PubMed  Google Scholar 

  44. Toprak, U., Baldwin, D., Erlandson, M., Gillott, C., & Hegedus, D. D. (2010). Insect intestinal mucins and serine proteases associated with the peritrophic matrix from feeding, starved and molting Mamestra configurata larvae. Insect Molecular Biology, 19, 163–175.

    Article  CAS  PubMed  Google Scholar 

  45. Sarauer, B. L., Gillott, C., & Hegedus, D. D. (2003). Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella. Insect Molecular Biology, 12, 333–343.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, X., & Guo, W. (2011). Isolation and identification of insect intestinal mucin Haiim86 – The new target for Helicoverpa armigera biocontrol. International Journal of Biology, 7, 286–296.

    Article  Google Scholar 

  47. Perez-Vilar, J., & Hill, R. L. (1999). The structure and assembly of secreted mucins. The Journal of Biological Chemistry, 274, 31751–31754.

    Article  CAS  PubMed  Google Scholar 

  48. Harper, M. S., & Granados, R. R. (1999). Peritrophic membrane structure and formation of larval Trichoplusia ni with an investigation on the secretion patterns of a PM mucin. Tissue and Cell, 31, 202–211.

    Article  CAS  PubMed  Google Scholar 

  49. Devine, P. L., & McKenzie, F. C. (1992). Mucins: Structure, function, and associations with malignancy. BioEssays, 14, 619–625.

    Article  CAS  PubMed  Google Scholar 

  50. Van den Steen, P., Rudd, P. M., Dwek, R. A., & Opdenakker, G. (1998). Concepts and principles of O-linked glycosylation. Critical Reviews in Biochemistry and Molecular Biology, 33, 151–208.

    Article  PubMed  Google Scholar 

  51. Van Klinken, B. J.-W., Dekker, J., Buller, H. A., & Einerhand, A. W. C. (1995). Mucin gene structure and expression: Protection vs. adhesion. The American Journal of Physiology, 269G, 613–627.

    Google Scholar 

  52. Agrawal, S., Kelkenberg, M., Begum, K., Steinfeld, L., Williams, C. E., Kramer, K. J., Beeman, R. W., Park, Y., Muthukrishnan, S., & Merzendorfer, H. (2014). Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. Insect Biochemistry and Molecular Biology, 49, 24–34.

    Article  CAS  PubMed  Google Scholar 

  53. Kuraishi, T., Binggeli, O., Opota, O., Buchon, N., & Lemaitre, B. (2011). Genetic evidence for a protective role of the peritrophic matrix against bacterial infection in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 20, 15966–15971.

    Article  Google Scholar 

  54. Wang, P., & Granados, R. R. (2000). Calcofluor disrupts the midgut defense systems in insects. Insect Biochemistry and Molecular Biology, 30, 135–143.

    Article  CAS  PubMed  Google Scholar 

  55. Levy, S. M., Falleiros, A. M., Moscardi, F., & Gregorio, E. A. (2011). The role of peritrophic membrane in the resistance of Anticarsia gemmatalis larvae (Lepidoptera: Noctuidae) during the infection by its nucleopolyhedrovirus (AgMNPV). Arthropod Structures, 40, 429–434.

    Article  Google Scholar 

  56. Li, Q., Li, L., Moore, K., Donly, C., Theilmann, D. A., & Erlandson, M. (2003). Characterization of Mamestra configurata nucleopolyhedrovirus enhancin and its functional analysis via expression in an Autographa californica M nucleopolyhedrovirus recombinant. The Journal of General Virology, 84123–132.

    Google Scholar 

  57. Hoover, K., Humphries, M. A., Gendron, A. R., & Slavicek, J. M. (2010). Impact of viral enhancin genes on potency of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar following disruption of the peritrophic matrix. Journal of Invertbrate Pathology, 104, 150–152.

    Article  CAS  Google Scholar 

  58. Fang, S., Wang, L., Guo, W., Zhang, X., Peng, D., Luo, C., Yu, Z., & Sun, M. (2009). Bacillus thuringiensis Bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Applied and Environmental Microbiology, 75, 5237–5243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sudha, P. M., & Muthu, S. P. (1988). Damage to the midgut epithelium caused by food in the absence of peritrophic membrane. Current Science, 57, 624–625.

    Google Scholar 

  60. Hegedus, D. D., Baldwin, D., O’Grady, M., Braun, L., Gleddie, S., Sharpe, A., Lydiate, D., & Erlandson, M. (2003). Midgut proteases from Mamestra configurata (Lepidoptera: Noctuidae) larvae: Characterization, cDNA cloning and expressed sequence tag analysis. Archives of Insect Biochemistry and Physiology, 53, 30–47.

    Article  CAS  PubMed  Google Scholar 

  61. Erlandson, M. A., Hegedus, D. D., Baldwin, D., & Toprak, U. (2010). Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species and protease inhibitor. Archives of Insect Biochemistry, 75, 70–91.

    Article  CAS  Google Scholar 

  62. Wang, P., Li, G., & Granados, R. R. (2004). Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: Structural characteristics and their functions in the protease rich insect gut. Insect Biochemistry and Molecular Biology, 34, 215–227.

    Article  CAS  PubMed  Google Scholar 

  63. Devenport, M., Alvarenga, P. H., Shao, L., Fujioka, H., Bianconi, M. L., Oliveira, P. L., & Jacobs-Lorena, M. (2006). Identification of the Aedes aegypti peritrophic matrix protein AeIMUCI as a heme-binding protein. Biochemistry, 45, 9540–9549.

    Article  CAS  PubMed  Google Scholar 

  64. Chen, W.-J., Huang, L.-X., Hu, D., Liu, L.-Y., Gu, J., Huang, L.-H., & Feng, Q.-L. (2014). Cloning, expression and chitin-binding activity of two peritrophin-like protein genes in the common cutworm, Spodoptera litura. Insect Science, 21, 449–448.

    Article  CAS  PubMed  Google Scholar 

  65. Ferreira, C., & Terra, W. R. (1989). Spatial organization of digestion, secretory mechanisms and digestive enzyme properties in Pheropsophus aequinoctialis (Coleoptera: Carabidae). Insect Biochemistry, 19, 383–391.

    Article  CAS  Google Scholar 

  66. Jordão, B. P., Capella, A. N., Terra, W. R., Ribeiro, A. F., & Ferreira, C. (1999). Nature of the anchors of membrane-bound aminopeptidase, amylase, and trypsin and secretory mechanisms in Spodoptera frugiperda (Lepidoptera) midgut cells. Journal of Insect Physiology, 45, 29–37.

    Article  PubMed  Google Scholar 

  67. Jordão, B. P., & Terra, W. R. (1991). Regional distribution and substrate specificity of digestive enzymes involved in terminal digestion in Musca domestica hind-midguts. Archives of Insect Biochemistry and Physiology, 17, 157–168.

    Article  PubMed  Google Scholar 

  68. Santos, C. D., & Terra, W. R. (1986). Distribution and characterization of oligomeric digestive enzymes from Erinnyis Ello larvae and inferences concerning secretory mechanisms and the permeability of the peritrophic membrane. Insect Biochemistry, 16, 691–700.

    Article  CAS  Google Scholar 

  69. Takesue, Y., Yokota, K., Miyajima, S., Taguchi, R., & Ikezawa, H. (1989). Membrane anchors of alkaline phosphatase and trehalase associated with the plasma membrane of larval midgut epithelial cells of the silkworm, Bombyx mori. Journal of Biochemistry, 105, 998–1001.

    Article  CAS  PubMed  Google Scholar 

  70. Guo, W., Li, G., Pang, Y., & Wang, P. (2005). A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni. Insect Biochemistry and Molecular Biology, 35, 1224–1234.

    Article  CAS  PubMed  Google Scholar 

  71. Yang, H.-J., Zhou, F., Malik, F. A., Bhaskar, R., Li, X.-H., Hu, J.-B., Sun, C.-B., & Miao, Y.-G. (2010). Identification and characterization of two chitin-binding proteins from the peritrophic membrane of the silkworm, Bombyx mori. Archives of Insect Biochemistry and Physiology, 75, 221–230.

    Article  CAS  PubMed  Google Scholar 

  72. Zhong, X.-W., Wang, X.-H., Tan, A., Xia, Q.-Y., Xiang, Z.-H., & Zhao, P. (2014). Identification and molecular characterization of a chitin deacetylase from Bombyx mori peritrophic membrane. International Journal of Molecular Sciences, 15, 1946–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jakubowska, A. K., Caccia, S., Gordon, K. H., Ferré, J., & Herrero, S. (2010). Downregulation of a chitin deacetylase-like protein in response to baculovirus infection and its application for improving baculovirus infectivity. Journal of Virology, 84, 2546–2555.

    Article  CAS  Google Scholar 

  74. Cho, Y. W., Jang, J., Park, C. R., & Ko, S. W. (2000). Preparation and solubility in acid and water of partially deacetylated chitins. Biomacromolecules, 1, 609–614.

    Article  CAS  PubMed  Google Scholar 

  75. Wenling, C., Duohui, J., Jiamou, L., Yandao, G., Nanming, Z., & Xiufang, Z. (2005). Effects of the degree of deacetylation on the physicochemical properties and Schwann cell affinity of chitosan films. Journal of Biomaterials Applications, 20, 157–177.

    Article  CAS  PubMed  Google Scholar 

  76. Tellam, R. L., & Eisemann, C. (2000). Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina. Insect Biochemistry and Molecular Biology, 30, 1189–1201.

    Article  CAS  PubMed  Google Scholar 

  77. Zheng, Y. P., Retnakaran, A., Krell, P. J., Arif, B. M., Primavera, M., & Feng, Q. L. (2003). Temporal, spatial and induced expression of chitinase in the spruce budworm, Choristoneura fumiferana. Journal of Insect Physiology, 49, 241–247.

    Article  CAS  PubMed  Google Scholar 

  78. Toprak, U., Hegedus, D. D., Baldwin, D., Coutu, C., & Erlandson, M. (2014). Spatial and temporal synthesis of Mamestra configurata peritrophic matrix through a larval stadium. Insect Molecular Biology and Biochemistry, 54, 89–97.

    Article  CAS  Google Scholar 

  79. Ahmad, T., Rajagopal, R., & Bhatnagar, K. (2003). Molecular characterization of chitinase from polyphagous pest Helicoverpa armigera. Biochemical and Biophysical Research Communications, 310, 188–195.

    Article  CAS  PubMed  Google Scholar 

  80. Girard, C., & Jouanin, L. (1999). Molecular cloning of a gut-specific chitinase cDNA from the beetle Phaedon cochleariae. Insect Biochemistry and Molecular Biology, 29, 549–556.

    Article  CAS  PubMed  Google Scholar 

  81. Zhu, Q., Arakane, Y., Beeman, R. W., Kramer, K. J., & Muthukrishnan, S. (2008). Functional specialization among insect chitinase family genes revealed by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 105, 6650–6655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shen, Z., & Jacobs-Lorena, M. (1997). Characterization of a novel gut specific chitinase gene from the human malaria vector, Anopheles gambiae. The Journal of Biological Chemistry, 272, 28895–28900.

    Article  CAS  PubMed  Google Scholar 

  83. Filho, B. P. D., Lemos, F. J. A., Secundino, N. F. C., Pascoa, V., Pereira, S. T., & Pimenta, P. F. P. (2002). Presence of chitinase and beta-N-acetylglucosaminidase in the Aedes aegypti: A chitinolytic system involving peritrophic matrix formation and degradation. Insect Biochemistry and Molecular Biology, 32, 1723–1729.

    Article  CAS  PubMed  Google Scholar 

  84. Ramalho-Ortigao, J. M., & Traub-Cseko, Y. M. (2003). Molecular characterization of Llchit1, a midgut chitinase cDNA from the leishmaniasis vector Lutzomyia longipalpis. Insect Biochemistry and Molecular Biology, 33, 279–287.

    Article  CAS  PubMed  Google Scholar 

  85. Khajuria, C., Buschman, L. L., Chen, M. S., Muthukrishnan, S., & Zhu, K. Y. (2010). A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochemistry and Molecular Biology, 40, 621–629.

    Article  CAS  PubMed  Google Scholar 

  86. Christeller, J. T., Laing, W. A., Markwick, N. P., & Burgess, E. P. J. (1992). Midgut protease activities in 12 phytophagous Lepidopteran larvae: Dietary and protease inhibitor interactions. Insect Biochemistry and Molecular Biology, 22, 735–746.

    Article  CAS  Google Scholar 

  87. Eguchi, M., Iwamoto, A., & Yamauchi, K. (1982). Interrelation of proteases from the midgut lumen, epithelia and peritrophic membrane of the silkworm, Bombyx mori L. Comparative Biochemistry and Physiology A, 72, 359–363.

    Article  Google Scholar 

  88. Terra, W. R., & Ferreira, C. (1994). Insect digestive enzymes: Properties, compartmentalization and function. Comparative Biochemistry and Physiology. B, 109, 1–62.

    Article  Google Scholar 

  89. Ferreira, C., Capella, A. N., Sitnik, R., & Terra, W. R. (1994). Digestive enzymes in midgut cells, endo- and ectoperitrophic contents, and peritrophic membranes of Spodoptera frugiperda (lepidoptera) larvae. Archives of Insect Biochemistry and Physiology, 26, 299–313.

    Article  CAS  Google Scholar 

  90. Bolognesi, R., Ribeiro, A. F., Terra, W. R., & Ferreira, C. (2001). The peritrophic membrane of Spodoptera frugiperda: Secretion of peritrophins and role in immobilization and recycling digestive enzymes. Archives of Insect Biochemistry and Physiology, 47, 62–75.

    Article  CAS  PubMed  Google Scholar 

  91. Möhrlen, F., Maniura, M., Plickert, G., Frohme, M., & Frank, U. (2006). Evolution of astacin-like metalloproteases in animals and their function in development. Evolution and Development, 8, 223–231.

    Article  PubMed  Google Scholar 

  92. Yan, J., Cheng, Q., Li, C. B., & Aksoy, S. (2002). Molecular characterization of three gut genes from Glossina morsitans morsitans: Cathepsin B, zinc-metalloprotease and zinc-carboxypeptidase. Insect Molecular Biology, 11, 57–65.

    Article  CAS  PubMed  Google Scholar 

  93. Wagner, W., Krieger, L., & Schnetter, W. (2000). Why is the scarab specific Bacillus thuringiensis ssp japonensis strain Buibui inefficient against Melolontha spp. In S. Keller (Ed.), Integrated control of soil pest subgroup “Melolontha”. Conference Proceedings IOBC/WPRS 23, 55–60.

    Google Scholar 

  94. Billingsley, P. F., & Downe, A. E. R. (1985). Cellular localisation of aminopeptidase in the midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae) during blood digestion. Cell and Tissue Research, 241, 421–428.

    Article  Google Scholar 

  95. Crava, C. M., Bel, Y., Lee, S. F., Manachini, B., Heckel, D. G., & Escriche, B. (2010). Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hübner) and Bombyx mori (L.): Sequences, mapping and expression. Insect Biochemistry and Molecular Biology, 40, 506–515.

    Article  CAS  PubMed  Google Scholar 

  96. Garczynski, S. F., & Adang, M. J. (1995). Bacillus thuringiensis CryIA(c) δ-endotoxin binding aminopeptidase in the Manduca sexta midgut has a glycosyl-phosphatidylinositol anchor. Insect Biochemistry and Molecular Biology, 25, 409–415.

    Article  CAS  Google Scholar 

  97. Takesue, S., Yokota, K., Miyajima, S., Taguchi, R., Ikezawa, H., & Takesue, Y. (1992). Partial release of aminopeptidase N from larval midgut cell membranes of the silkworm, Bombyx mori, by phosphatidylinositol-specific phospholipase C. Comparative Biochemistry and Physiology - Part B, 102, 7–11.

    Article  CAS  Google Scholar 

  98. Rees, J. S., Jarrett, P., & Ellar, D. J. (2009). Peritrophic membrane contribution to Bt Cry delta-endotoxin susceptibility in Lepidoptera and the effect of calcofluor. Journal of Invertebrate Pathology, 100, 139–146.

    Article  CAS  PubMed  Google Scholar 

  99. Arreguin-Espinosa, R., Arreguin, B., & Gonzales, C. (2000). Purification and properties of a lipase from Cephaloleia presignis (Coleoptera, Chrysomelidae). Biotechnology and Applied Biochemistry, 31, 239–244.

    Article  CAS  PubMed  Google Scholar 

  100. Rebers, J. E., & Riddiford, L. M. (1988). Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. Journal of Molecular Biology, 203, 411–23.

    Article  CAS  PubMed  Google Scholar 

  101. Bragatto, I., Genta, F. A., Ribeiro, A. F., Terra, W. R., & Ferreira, C. (2010). Characterization of a β-1, 3-glucanase active in the alkaline midgut of Spodoptera frugiperda larvae and its relation to β-glucan-binding proteins. Insect Biochemistry and Molecular Biology, 40, 861–872.

    Article  CAS  PubMed  Google Scholar 

  102. Genta, F. A., Blanes, L., Cristofoletti, P. T., do Lago, C. L., Terra, W. R., & Ferreira, C. (2006). Purification, characterization and molecular cloning of the major chitinase from Tenebrio molitor larval midgut. Insect Biochemistry and Molecular Biology, 36, 789–800.

    Article  CAS  PubMed  Google Scholar 

  103. Pytelkova, J., Hubert, J., Lepsik, M., Sobotnik, J., Sindelka, R., Krizková, I., Horn, M., & Mares, M. (2009). Digestive alpha-amylases of the flour moth Ephestia kuehniella – adaptation to alkaline environment and plant inhibitors. The FEBS Journal, 276, 3531–3546.

    Article  CAS  PubMed  Google Scholar 

  104. Yoshitake, N., Eguchi, M., & Akiyama, A. (1966). Genetic control on the alkaline phosphatase of the midgut in the silkworm. Journal of Sericultural Science of Japan, 35, 1–6.

    Google Scholar 

  105. Okada, N., Azuma, M., & Eguchi, M. (1989). Alkaline phosphatase isozymes in the midgut of silkworm: Purification of high pH-stable microvillus and labile cytosolic enzymes. Journal of Comparative Physiology B, 159, 123–130.

    Article  CAS  Google Scholar 

  106. Perera, O. P., Willis, J. D., Adang, M. J., & Jurat-Fuentes, J. L. (2009). Cloning and characterization of the Cry1Ac-binding alkaline phosphatase (HvALP) from Heliothis virescens. Insect Biochemistry and Molecular Biology, 39, 294–302.

    Article  CAS  PubMed  Google Scholar 

  107. Ning, C., Wu, K., Liu, C., Gao, Y., Jurat-Fuentes, J. L., & Gao, X. (2010). Characterization of a Cry1Ac toxin-binding alkaline phosphatase in the midgut from Helicoverpa armigera (Hübner) larvae. Journal of Insect Physiology, 56, 666–672.

    Article  CAS  PubMed  Google Scholar 

  108. Kayser, H. (2005). Lipocalins and structurally related ligand-binding proteins. In L.I. Gilbert, K. Iatrou & S. Gill (Eds.), Comprehensive molecular insect science (Vol. 4). Oxford: Elsevier.

    Google Scholar 

  109. Pandian, G. N., Ishikawa, T., Togashi, M., Shitomi, Y., Haginoya, K., Yamamoto, S., Nishiumi, T., & Hori, H. (2008). Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry1A, is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity. Applied and Environmental Microbiology, 74, 1324–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mauchamp, B., Royer, C., Garel, A., Jalabert, A., Da Rocha, M., Grenier, A. M., Labas, V., Mita, K., Kadono, K., & Chavancy, G. (2006). Polycalin (chlorophyllid A binding protein): A novel, very large fluorescent lipocalin from the midgut of the domestic silkworm Bombyx mori L. Insect Biochemistry and Molecular Biology, 36, 623–633.

    Article  CAS  PubMed  Google Scholar 

  111. Angelucci, C., Barrett-Wilt, G. A., Hunt, D. F., Akhurst, R. J., East, P. D., Gordon, K. H. J., & Campbell, P. M. (2008). Diversity of aminopeptidases, derived from four lepidopteran gene duplications, and polycalins expressed in the midgut of Helicoverpa armigera: Identification of proteins binding the δ-endotoxin, Cry1Ac of Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 38, 685–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barbehenn, R. V. (2001). Roles of peritrophic membranes in protecting herbivorous insects from ingested plant allelochemicals. Archives of Insect Biochemistry and Physiology, 47, 86–99.

    Article  CAS  PubMed  Google Scholar 

  113. Jiang, H., Wang, Y., Huang, Y., Mulnix, A., Kadel, J., Cole, K., & Kanost, M. (1996). Organization of Serpin Gene-1 from Manduca sexta: Evolution of a family of alternate exons encoding the reactive site loop. The Journal of Biological Chemistry, 271, 28017–28023.

    Article  CAS  PubMed  Google Scholar 

  114. Molnar, K., Holderith Borhegyi, N., Csikos, G., & Sass, M. (2001). Distribution of serpins in the tissues of the tobacco hornworm (Manduca sexta) larvae: Existence of new serpins possibly encoded by a gene distinct from the serpin-1 gene. Journal of Insect Physiology, 47, 675–687.

    Article  CAS  PubMed  Google Scholar 

  115. Hegedus, D. D., Erlandson, M., Baldwin, D., Hou, X., & Chamankhah, M. (2008). Differential expansion and evolution of the exon family encoding the Serpin-1 reactive centre loop has resulted in divergent serpin repertoires among the Lepidoptera. Gene, 418, 15–21.

    Article  CAS  PubMed  Google Scholar 

  116. Chamankhah, M., Braun, L., Visal-Shah, S., O’Grady, M., Baldwin, D., Shi, X., Hemmingsen, S. M., Alting-Mees, M., & Hegedus, D. D. (2003). Mamestra configurata Serpin-1 homologues: Implications for a regulatory role for serpins in molting. Insect Biochemistry and Molecular Biology, 33, 355–369.

    Article  CAS  PubMed  Google Scholar 

  117. Peters, W., Kolb, H., & Kolb-Bachofen, V. (1983). Evidence for a sugar receptor (lectin) in the peritrophic membrane of the blowfly larva, Calliphora erythrocephala Mg. (Diptera). Journal of Insect Physiology, 29, 275–280.

    Article  CAS  Google Scholar 

  118. Chai, L. Q., Tian, Y. Y., Yang, D. T., Wang, J. X., & Zhao, X. F. (2008). Molecular cloning and characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera. Developmental and Comparative Immunology, 32, 71–83.

    Article  CAS  PubMed  Google Scholar 

  119. Takase, H., Watanabe, A., Yoshizawa, Y., Kitami, M., & Ryoichi, S. (2009). Identification and comparative analysis of three novel C-type lectins from the silkworm with functional implications in pathogen recognition. Developmental and Comparative Immunology, 33, 789–800.

    Article  CAS  PubMed  Google Scholar 

  120. Yu, X. Q., & Kanost, M. R. (2000). Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to gram-negative bacteria. The Journal of Biological Chemistry, 275, 37373–37381.

    Article  CAS  PubMed  Google Scholar 

  121. Lehane, M. J1., & Msangi, A. R. (1991). Lectin and peritrophic membrane development in the gut of Glossina m. morsitans and a discussion of their role in protecting the fly against trypanosome infection. Medical and Veterinary Entomology, 5, 495–501.

    Article  CAS  PubMed  Google Scholar 

  122. Herrero, S., Ansems, M., Van Oers, M. M., Vlak, J. V., Bakker, P. L., & de Maagd, R. A. (2007). REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. Insect Biochemistry and Molecular Biology, 37, 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  123. Dong, D.-J., He, H.-J., Chai, L.-Q., Wang, J.-X., & Zhao, X.-F. (2007). Identification of differentially expressed genes during larval molting and metamorphosis of Helicoverpa armigera. BMC Developmental Biology, 7, 73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, J.-L., Jiang, X.-J., Wang, Q., Hou, L.-J., Xu, D.-W., Wang, J.-X., & Zhao, X.-F. (2007). Identification and expression profile of a putative basement membrane protein gene in the midgut of Helicoverpa armigera. BMC Developmental Biology, 7, 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yin, J., Wei, Z.-J., Li, K.-B., Cao, Y.-Z., & Guo, W. (2010). Identification and molecular characterization of a new member of the peritrophic membrane proteins from the meadow moth, Loxostege sticticalis. International Journal of Biological Sciences, 6, 491–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Richards, A. G., & Richards, P. A. (1977). The peritrophic membrane of insects. Annual Review of Entomology, 22, 219–240.

    Article  PubMed  Google Scholar 

  127. Binnington, K. C. (1988). Ultrastructure of the peritrophic membrane-secreting cells in the cardia of the blowfly, Lucilia cuprina. Tissue and Cell, 20, 269–281.

    Article  CAS  PubMed  Google Scholar 

  128. Waterhouse, D. F. (1953). The occurrence and significance of the peritrophic membrane with special reference to adult Lepidoptera and Diptera. Australian Journal of Zoology, 1, 299–318.

    Article  Google Scholar 

  129. Harper, M. S., & Hopkins, T. L. (1997). Peritrophic membrane structure and secretion in European corn borer larvae (Ostrinia nubilalis). Tissue and Cell, 29, 463–475.

    Article  CAS  PubMed  Google Scholar 

  130. Adang, M. J., & Spence, K. D. (1981). Surface morphology of peritrophic membrane formation in the cabbage looper, Trichoplusia ni. Cell and Tissue Research, 218, 141–147.

    Article  CAS  PubMed  Google Scholar 

  131. Ryerse, J. S., Purcell, J. P., Sammons, R. D., & Lavrik, P. B. (1992). Peritrophic membrane structure and formation in the larva of a moth, Heliothis. Tissue and Cell, 24, 751–771.

    Article  CAS  PubMed  Google Scholar 

  132. Silva, W., Cardoso, C., Ribeiro, A. F., Terra, W. R., & Ferreira, C. (2013). Midgut proteins released by microapocrine secretion in Spodoptera frugiperda. Journal of Insect Physiology, 59, 70–80.

    Article  CAS  PubMed  Google Scholar 

  133. Hopkins, T. L., & Harper, M. S. (2001). Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Archives of Insect Biochemistry and Physiology, 47, 100–109.

    Article  CAS  PubMed  Google Scholar 

  134. Kabir, A. (1987). Peritrophic membrane of the jute hairy caterpillar Diacrisia obliqua Walker. Bangladesh Journal of Zoology, 1, 9–16.

    Google Scholar 

  135. Zimoch, L., & Merzendorfer, H. (2002). Immunolocalization of chitin synthase in the tobacco hornworm. Cell and Tissue Research, 308, 287–297.

    Article  CAS  PubMed  Google Scholar 

  136. Arakane, Y., Hogenkamp, D. G., Zhu, Y. C., Kramer, K. J., Specht, C. A., Beeman, R. W., Kanost, M. R., & Muthukrishnan, S. (2004). Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochemistry and Molecular Biology, 34, 291–304.

    Article  CAS  PubMed  Google Scholar 

  137. Hogenkamp, D. G., Arakane, Y., Zimoch, L., Merzendorfer, H., Kramer, K. J., Beeman, R. W., Kanost, M. R., Specht, C. A., & Muthukrishnan, S. (2005). Chitin synthase genes in Manduca sexta: Characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development. Insect Biochemistry and Molecular Biology, 35, 529–540.

    Article  CAS  PubMed  Google Scholar 

  138. Terenius, O., Papanicolaou, A., Garbutt, J. S., Eleftherianos, I., Huvenne, H., Sriramana, K., Albrechtsen, M., An, C., Aymeric, J.-L., Barthel, A., Bebas, P., Bitra, K., Bravo, A., Chevalier, F., Collinge, D. P., Crava, C. M., de Maagd, R. A., Duvic, B., Erlandson, M., Faye, I., Felföldi, G., Fujiwara, H., Futahashi, R., Gandhe, A. S., Gatehouse, H. S., Gatehouse, L. N., Giebultowicz, J., Gómez, I., Grimmelikhuijzen, C. J., Groot, A. T., Hauser, F., Heckel, D. G., Hegedus, D. D., Hrycaj, S., Huang, L., Hull, J. J., Iatrou, K., Iga, M., Kanost, M. R., Kotwica, J., Li, C., Li, J., Liu, J., Lundmark, M., Matsumoto, S., Meyering-Vos, M., Millichap, P. J., Monteiro, A., Mrinal, N., Niimi, T., Nowara, D., Ohnishi, A., Oostra, V., Ozaki, K., Papakonstantinou, M., Popadic, A., Rajam, M. V., Saenko, S., Simpson, R. M., Soberón, M., Strand, M. R., Tomita, S., Toprak, U., Wang, P., Wee, C. W., Whyard, S., Zhang, W., Nagaraju, J., ffrench-Constant, R. H., Herrero, S., Gordon, K., Swevers, L., & Smagghe, G. (2011). RNA interference in lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 57, 231–245.

    Article  CAS  PubMed  Google Scholar 

  139. Whyard, S., Singh, A. D., & Wong, S. (2009). Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology, 39, 824–832.

    Article  CAS  PubMed  Google Scholar 

  140. Turner, C. T., Davy, M. W., MacDiarmid, R. M., Plummer, K. M., Birch, N. P., & Newcomb, R. D. (2006). RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Molecular Biology, 15, 383–391.

    Article  CAS  PubMed  Google Scholar 

  141. Yang, Y., Zhu, Y. C., Ottea, J., Husseneder, C., Leonard, B. R., Abel, C., & Huang, F. (2010). Molecular characterization and RNA interference of three midgut aminopeptidase N isozymes from Bacillus thuringiensis-susceptible and -resistant strains of sugarcane borer, Diatraea saccharalis. Insect Biochemistry and Molecular Biology, 40, 592–603.

    Article  CAS  PubMed  Google Scholar 

  142. Jayachandran, B., Hussain, M., & Asgari, S. (2013). An insect trypsin-like serine protease as a target of microRNA: Utilization of microRNA mimics and inhibitors by oral feeding. Insect Biochemistry and Molecular Biology, 43, 398–406.

    Article  CAS  PubMed  Google Scholar 

  143. Toprak, U., Baldwin, D., Erlandson, M., Gillott, C., Harris, S., & Hegedus, D. D. (2013). In vitro and in vivo application of RNA interference for targeting genes involved in peritrophic matrix synthesis in a lepidopteran system. Insect Science, 20, 92–100.

    Article  CAS  PubMed  Google Scholar 

  144. Jin, S., Singh, N. D., Li, L., Zhang, X., & Daniell, H. (2015). Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnology Journal, 13, 435–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Park, Y., & Kim, Y. (2013). RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target. Journal of Invertebrate Pathology, 114, 285–291.

    Article  CAS  PubMed  Google Scholar 

  146. Mao, Y. B., Cai, W. J., Wang, J. W., Hong, G. J., Tao, X. Y., Wang, L. J., Huang, Y. P., & Chen, X. Y. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25, 1307–1313.

    Article  CAS  PubMed  Google Scholar 

  147. Tian, H., Peng, H., Yao, Q., Chen, H., Xie, Q., Tang, B., & Zhang, W. (2009). Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One, 4, e6225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Palli, S. R. (2012). RNAi methods for management of insects and their pathogens. CAB Review, 7, 1–10.

    Article  CAS  Google Scholar 

  149. Toprak, U., Coutu, C., Baldwin, D., Erlandson, M., & Hegedus, D. D. (2014). Development of an improved RNA interference vector system for Agrobacterium-mediated plant transformation. Turkish Journal of Biology, 38, 40–47.

    Article  CAS  Google Scholar 

  150. Zhang, J., Khan, S. A., Hasse, C., Ruf, S., Heckel, D. G., & Bock, R. (2015). Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science, 347, 991–994.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwayne D. Hegedus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hegedus, D.D., Toprak, U., Erlandson, M. (2016). Lepidopteran Peritrophic Matrix Composition, Function, and Formation. In: Raman, C., Goldsmith, M., Agunbiade, T. (eds) Short Views on Insect Genomics and Proteomics. Entomology in Focus, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-24244-6_3

Download citation

Publish with us

Policies and ethics