Skip to main content

Nano-Insecticides for the Control of Human and Crop Pests

  • Chapter
  • First Online:

Part of the book series: Entomology in Focus ((ENFO,volume 4))

Abstract

Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like insecticides, pharmaceuticals, electronics, and agriculture. Biosynthesis of insecticides from plant extracts is currently under exploration. Plant extracts are very cost-effective and eco-friendly and thus can be an economic and efficient alternative for the large-scale synthesis of synthetic and other chemical insecticides. The present review was carried out to establish the management of insect pests using silver nanoparticles (AgNPs) from Cassia occidentalis against different life stages of crop and human pests. Synthesized AgNPs were characterized by UV–vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Characteristics of the synthesized AgNPs were confirmed by analyzing the excitation of surface plasmon resonance (SPR) using a UV–vis spectrophotometer at 420 nm. SEM analysis of the synthesized AgNPs clearly showed clustered and irregular shapes, mostly aggregated and having a size of 20–85 nm. The chemical composition of elements present in the solution was determined by its energy-dispersive spectrum. The FTIR analysis of the nanoparticles indicated the presence of proteins, which may be acting as capping agents around the nanoparticles. Biosynthesis of nanoparticles may be triggered by several compounds such as carbonyl groups, terpenoids, phenolics, flavones, amines, amides, proteins, pigments, alkaloids, and other reducing agents present in the biological extracts. Overall, this study adds knowledge on C. occidentalis-borne insecticides and green-synthesized AgNP toxic against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and safer pest control tools.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

a.u.:

Absorption unit

AgNP:

Silver nanoparticle

CQ:

Chloroquine

DMRT:

Duncan’s multiple range test

EDX:

Energy-dispersive X-ray

fcc:

Face-centered cubic

FTIR:

Fourier transform infrared

IPM:

Insect pest management

JCPDS:

Joint Committee on Powder Diffraction Standards

KeV:

Kiloelectronvolt

LC50, LC90 :

Lethal concentration

NPs:

Nanoparticles

ppm:

Parts per million

RBC:

Red blood cell

SD:

Standard deviation

SEM:

Scanning electron microscopy/microscope

SPR:

Surface plasmon resonance

UV–vis:

UV–visible

WHO:

World Health Organization

XRD:

X-ray diffraction

References

  1. James, A. A. (1992). Mosquito molecular genetics: The hands that feed bite back. Science, 257, 37–38.

    Article  CAS  PubMed  Google Scholar 

  2. Mehlhorn, H., Al-Rasheid, K. A., Al-Quraishy, S., & Abdel-Ghaffar, F. (2012). Research and increase of expertise in arachno-entomology are urgently needed. Parasitology Research, 110, 259–265.

    Article  PubMed  Google Scholar 

  3. Mehlhorn, H. (2008). Encyclopedia of parasitology (3rd ed.). Heidelberg: Springer.

    Book  Google Scholar 

  4. WHO. (2014). Malaria. Fact sheet N°94.

    Google Scholar 

  5. Siems, K. J., Mockenhaupt, F. P., Bienzle, U., Gupta, M. P., & Eich, E. (1999). In vitro antiplasmodial activity of Central American medicinal plants. Tropical Medicine and International Health, 4, 611–615.

    Article  Google Scholar 

  6. Bhat, P. G., & Surolia, N. (2001). In vitro antimalarial activity of extracts of three plants used in the traditional medicine of India. The American Journal of Tropical Medicine and Hygiene, 65, 304–308.

    Article  CAS  PubMed  Google Scholar 

  7. Bagavan, A., Rahuman, A. A., Kamaraj, C., Kaushik, N. K., Mohanakrishnan, D., & Sahal, D. (2011). Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitology Research, 108, 1099–1109.

    Article  PubMed  Google Scholar 

  8. Ibrahim, M. A., Aliyu, A. B., Sallau, A. B., Bashir, M., Yunusa, I., & Umar, T. S. (2010). Senna occidentalis leaf extract possesses antitrypanosomal activity and ameliorates the trypanosome-induced anemia and organ damage. Pharmacognosy Research, 2, 175–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Egharevba, O. H., Anselem, O. C., Abdullahi, M. S., Sabo, M., Okwute, K. S., & Okogun, I. J. (2010). Phytochemical analysis and broad spectrum antimicrobial activity of Cassia occidentalis L. (whole plant). New York Science Journal, 3, 74–81.

    Google Scholar 

  10. Yadava, R. N., & Satnami, D. K. (2011). Chemical constituents from Cassia occidentalis Linn. Indian Journal of Chemistry, 50B, 1112–1118.

    CAS  Google Scholar 

  11. Kuo, S. C., Chen, S. C., La, C. F., Teng, C. M., & Wang, J. P. (1996). Studies on the anti-inflammatory and antiplatelet activities of constituents isolated from the roots and stem of Cassia occidentalis L. Chinese Pharmaceutical Journal, 48, 291–302.

    CAS  Google Scholar 

  12. Tona, L., Cimanga, R. K., Mesia, K., Musuamba, C. T., De Bruyne, T., & Apers, S. (2004). In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in the Democratic Republic of Congo. Journal of Ethnopharmacology, 93, 27–32.

    Article  CAS  PubMed  Google Scholar 

  13. Lal, J., & Gupta, P. C. (1974). Two new anthraquinones from the seeds of Cassia occidentalis. Experientia, 30, 850–851.

    Article  CAS  Google Scholar 

  14. Kudav, N. A, & Kulkarni, A. B. (1974). Chemical investigation of Cassia occidentalis. Indian Journal of Chemistry, 12, 1042–1044.

    Google Scholar 

  15. Haraguchi, M., Górniak, S. L., Dagli, M. L. Z., & Raspantini, P. C. F. (1996). Determinac¸ ão dos constituintes químicos das frac¸ ões tóxicas de fedegoso (Senna occidentalis L.). In: Proceedings of Annual Meeting of the Brazilian Chemical Society, Poc¸ os de Caldas, Brazil.

    Google Scholar 

  16. Haraguchi, M., Dagli, M. L. Z., Raspantini, P. C. F., & Górniak, S. L. (2003). The effects of low doses of Senna occidentalis seeds on broiler chickens. Veterinary Research Communication, 27, 321–328.

    Article  CAS  Google Scholar 

  17. Bian, G., Joshi, D., Dong, Y., Lu, P., Zhou, G., Pan, X., Xu, Y., Dimopoulos, G., & Xi, Z. (2013). Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science, 340, 748–751.

    Article  CAS  PubMed  Google Scholar 

  18. Lee, S. E., Kim, J. E., & Lee, H. S. (2001). Insecticide resistance in increasing interest. Agricultural Chemistry and Biotechnology, 44, 105–112.

    CAS  Google Scholar 

  19. Becker, B. M., Cahill, J. D. (2010). Parasitic infections. In: J. A. Marx (Ed.), Rosen’s emergency medicine (Vol. 2(7), pp. 1752–1759). Philadelphia: Elsevier.

    Google Scholar 

  20. Rao, G. V. R., Wightman, J. A., & Ranga Rao, D. V. (1993). World review of the natural enemies and diseases of Spodoptera litura (F.) (Lepidoptera: Noctuidae). Insect Science and Application, 14, 273–284.

    Google Scholar 

  21. Murali Krishna, T., Devaki, K., Raja Reddy, K., & Venkateswarlu, U. (2008). Efficacy of certain new insecticide molecules against groundnut defoliator, Spodoptera litura (Fab.) (Noctuidae: Lepidoptera). Current Biotica, 2(2), 173–180.

    Google Scholar 

  22. Salata, O. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanbiotechnology, 6, 1–6.

    Google Scholar 

  23. Dias, A. M. G. C., Hussain, A., Marcos, A. S., & Roque, A. A. (2011). A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances, 29, 142–155.

    Article  CAS  PubMed  Google Scholar 

  24. Goodsell, D. S. (2004). Bionanotechnology: Lessons from nature. Hoboken: Wiley.

    Book  Google Scholar 

  25. Awwad, A. M., & Nidà, M. (2012). Green synthesis of silver nanoparticles by mulberry leaves extract. Nanoscience and Nanotechnology, 2, 125–128.

    Article  CAS  Google Scholar 

  26. Geoprincy, G., Saravanan, P., NagendraGandhi, N., & Renganathan, S. (2011). A novel approach for studying the combined antimicrobial effects of silver nanoparticles and antibiotics through agar over layer method and disk diffusion method. Digest Journal of Nanomaterials and Biostructures, 6, 1557–1565.

    Google Scholar 

  27. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.

    Article  CAS  PubMed  Google Scholar 

  28. Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extract. Bioprocess and Biosystems Engineering, 32, 79–84.

    Article  PubMed  Google Scholar 

  29. Roni, M., Murugan, K., Panneerselvam, C., Subramaniam, J., & Hwang, J. S. (2013). Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitology Research, 112, 981–990.

    Article  PubMed  Google Scholar 

  30. Dinesh, D., Murugan, K., Madhiyazhagan, P., Panneerselvam, C., Nicoletti, M., Jiang, W., Benelli, G., Chandramohan, B., & Suresh, U. (2015). Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi? Parasitology Research, 114, 1519–1529.

    Article  PubMed  Google Scholar 

  31. Suresh, U., Murugan, K., Benelli, G., Nicoletti, M., Barnard, D. R., Panneerselvam, C., Mahesh Kumar, P., Subramaniam, J., Dinesh, D., & Chandramohan, B. (2015). Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitology Research, 114, 1551–1562.

    Article  PubMed  Google Scholar 

  32. Murugan, K., Benelli, G., Suganya, A., Dinesh, D., Panneerselvam, C., Nicoletti, M., Hwang, J. S., Mahesh Kumar, P., Subramaniam, J., & Suresh, U. (2015). Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Research. doi:10.1007/s00436-015-4417-z.

    Google Scholar 

  33. Murugan, K., Benelli, G., Panneerselvam, C., Subramaniam, J., Jeyalalitha, T., Dinesh, D., Nicoletti, M., Hwang, J. S., Suresh, U., & Madhiyazhagan, P. (2015). Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Experimental Parasitology, 153, 129–138.

    Google Scholar 

  34. Sastry, M., Patil, V., & Sainkar, S. R. (1998). Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. The Journal of Physical Chemistry B, 102, 1404–1410.

    Article  CAS  Google Scholar 

  35. Shrivastava, S., & Dash, D. (2010). Label-free colorimetric estimation of proteins using nanoparticles of silver. Nano-Micro Letters, 2, 164–168.

    Article  CAS  Google Scholar 

  36. Nangia, Y., Wangoo, N., Goyal, N., Shekhawat, G., & Suri, C. R. (2009). A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microbial Cell Factories, 8, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zargar, M., Hamid, A. A., Bakar, F. A., Shamsudin, M. N., Shameli, K., Jahanshiri, F., & Farahani, F. (2011). Green synthesis and antibacterial effect of silver nanoparticles using Vitex Negundo L. Molecules, 16, 6667–6676.

    Article  CAS  PubMed  Google Scholar 

  38. Rajeshkumar, S., Malarkodi, C., Paulkumar, K., Vanaja, M., Gnanajobitha, G., & Annadurai, G. (2014). Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. International Journal of Metals, 1–8.

    Google Scholar 

  39. Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surface B Biointerfaces, 76, 50–56.

    Article  CAS  Google Scholar 

  40. Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W., Zhang, S., & Yang, X. (2007). Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology, 18, 285604.

    Article  Google Scholar 

  41. Shameli, K., Ahmad, M. B., Yunus, W. M. Z. W., & Ibrahim, N. A. (2010). Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. International Journal of Nanomedicine, 5, 743–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., Pyne, S., & Misra, A. (2009). Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids and Surface A: Physicochemical and Engineering Aspects, 348, 212–216.

    Article  CAS  Google Scholar 

  43. Dubey, M., Bhadauria, S., & Kushwah, B. S. (2009). Green Synthesis of nanosilver particles from extract of Eucalyptus Hybrida (Safeda) Leaf. Digest Journal of Nanomaterials and Biostructures, 4(3), 537–543.

    Google Scholar 

  44. Cho, K., Park, J., Osaka, T., & Park, S. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 51, 956–960.

    Article  CAS  Google Scholar 

  45. Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Khatak, J., Thyagi, A. K., & Kale, S. P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology, 19(7), 075103.

    Article  CAS  PubMed  Google Scholar 

  46. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J., & Chen, C. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18, 1–11.

    CAS  Google Scholar 

  47. Sathyavathi, R., Balamurali Krishna, M., Venugopal Rao, S., Saritha, R., & Narayana Rao, D. (2010). Biosynthesis of silver nanoparticles using Coriandrum Sativum leaf extract and their application in nonlinear optics. Advanced Science Letters, 3, 1–6.

    Article  Google Scholar 

  48. MacCuspie, R. I., Rogers, K., Patra, M., Suo, Z., Allen, A. J., & Martin, M. N. (2011). Toxicity testing of nanomaterials. Journal of Environmental Monitoring, 13, 1212–1226.

    Article  CAS  PubMed  Google Scholar 

  49. Nabikhan, A., Kandasamy, K., Raj, A., & Alikunhi, N. M. (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and Surface B: Biointerfaces, 79(2), 488–493.

    Article  CAS  Google Scholar 

  50. Kumar, V., Yadav, S. C., & Yadav, S. K. (2010). Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. Journal of Chemical Technology and Biotechnology, 85, 1301–1309.

    Article  CAS  Google Scholar 

  51. Chen, L., & Evans, J. R. (2009). Arched structures created by colloidal droplets as they dry. Langmuir, 25, 11299–11301.

    Article  CAS  PubMed  Google Scholar 

  52. Ankanna, S., Prasad, T. N. V. K. V., Elumalai, E. K., & Savithramma, N. (2010). Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem Bark. Digest Journal of Nanomaterials and Biostructures, 5(2), 369–372.

    Google Scholar 

  53. Xu, H., & Käll, M. (2002). Morphology effects on the optical properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 4, 254–259.

    Google Scholar 

  54. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.

    Article  CAS  PubMed  Google Scholar 

  55. Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), e103–e109.

    Article  Google Scholar 

  56. Magudapatty, P., Gangopadhyayrans, P., Panigrahi, B. K., Nair, K. G. M., & Dhara, S. (2001). Electrical transport studies of Ag nanoparticles embedded in glass matrix. Physica B, 299, 142–146.

    Article  Google Scholar 

  57. Larson, R. T., Lorch, J. M., Pridgeon, J. W., Becnel, J. J., Clarck, G. G., & Lan, Q. (2010). The biological activity of α-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. Journal of Medical Entomology, 47, 249–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Maheswaran, R., & Ignacimuthu, S. (2012). Anovel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitology Research, 110, 1801–1813.

    Article  PubMed  Google Scholar 

  59. Prabhu, K., Murugan, K., Nareshkumar, A., Ramasubramanian, N., & Bragadeeswaran, S. (2011). Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine, 1(2), 124–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murugan, K., & Jeyabalan, D. (1999). Effect of certain plant extracts against the mosquito, Anopheles stephensi Liston. Current Science, 76, 631–633.

    Google Scholar 

  61. Rawani, A., Haldar, K. M., Ghosh, A., & Chandra, G. (2009). Larvicidal activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitology Research, 105, 1411–1417.

    Article  PubMed  Google Scholar 

  62. Rajakumar, G., & Rahuman, A. (2011). Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Tropica, 118, 196–203.

    Article  CAS  PubMed  Google Scholar 

  63. Soni, N., & Prakash, S. (2012). Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitology Research, 110(1), 175–184.

    Article  PubMed  Google Scholar 

  64. Patil, C. D., Patil, S. V., Borase, H. P., Salunke, B. K., & Salunkhe, R. B. (2012). Larvicidal activity of silver nanoparticles synthesised using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitology Research, 110, 1815–1822.

    Article  PubMed  Google Scholar 

  65. Tiwari, D. K., & Behari, J. (2009). Biocidal nature of treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli dh5. Advances in Biological Research, 3(3–4), 89–95.

    CAS  Google Scholar 

  66. Agalya Priyadarshini, K., Murugan, K., Panneerselvam, C., Ponarulselvam, S., Jiang-Shiou Hwang, & Nicoletti, M. (2012). Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitology Research, 111, 997–1006.

    Article  Google Scholar 

  67. Kumar, N. A., Murugan, K., Rejeeth, C., Madhiyazhagan, P., & Barnard, D. R. (2012). Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne and Zoonotic Diseases, 12(3), 262–268.

    Article  Google Scholar 

  68. Gessler, M. C., Nkunya, M. H., Mwasumbi, L. B., Heinrich, M., & Tanner, M. (1994). Screening Tanzanian medicinal plants for antimalarial activity. Acta Tropica, 56(1), 65–77.

    Article  CAS  PubMed  Google Scholar 

  69. Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, A., Kalimuthu, K., & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian-Pacific Journal of Tropical Biomedicine, 574–580.

    Google Scholar 

  70. Panneerselvam, C., Ponarulselvam, S., & Murugan, K. (2011). Potential antiplasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Archives of Applied Science Research, 3(6), 208–217.

    CAS  Google Scholar 

  71. Ravikumar, S., Inbaneson, S. J., & Suganthi, P. (2012). In vitro antiplasmodial activity of ethanolic extracts of South Indian medicinal plants against Plasmodium falciparum. Asian Pacific Journal of Tropical Disease, 180183.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support by King Saud University, Vice Deanship of Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Murugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Murugan, K. et al. (2016). Nano-Insecticides for the Control of Human and Crop Pests. In: Raman, C., Goldsmith, M., Agunbiade, T. (eds) Short Views on Insect Genomics and Proteomics. Entomology in Focus, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-24244-6_10

Download citation

Publish with us

Policies and ethics