Skip to main content

Comparative Genomics of Transcription Factor Binding in Drosophila

  • Chapter
  • First Online:
Book cover Short Views on Insect Genomics and Proteomics

Part of the book series: Entomology in Focus ((ENFO,volume 3))

  • 856 Accesses

Abstract

While the number of genome-wide, in vivo transcription factor binding datasets is growing, yielding greater insight into the role of regulatory DNA in development, evolution and disease, it is difficult to tease apart signal from noise and identify truly functional binding events. Comparative studies of transcription factor binding between closely related species offer one way to combat this problem, as functionally important aspects of enhancer architecture tend to be constrained by natural selection. Here we review the current field in the area of in vivo transcription factor binding in Drosophila, illustrating how evolutionary studies within the drosophilids are helping to unravel the complexity of the genomic regulatory code. A number of techniques exist for studying transcription factor binding on a genome-wide scale, including ChIP-chip, ChIP-seq and DamID; we touch on these and address the challenges and advantages of each with regard to working on non-model species. We also describe major findings in the field so far, focusing on comparative studies of the developmental regulatory network, the logic of combinatorial binding and the evolutionary properties of noncoding DNA. Finally, we examine how insights from Drosophila compare with similar studies in the vertebrates and address some open questions that have been raised by studies conducted thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A-P:

Anterior-posterior

ChIP:

Chromatin immunoprecipitation

ChIP-chip:

Chromatin immunoprecipitation combined with the use of microarray chips

ChIP-seq:

Chromatin immunoprecipitation combined with parallel array sequencing

Dam:

DNA adenine methyltransferase

DamID:

DNA adenine methyltransferase identification

DamID-seq:

DNA adenine methyltransferase identification combined with parallel array sequencing

eQTL:

Expression quantitative trait locus

FWOB:

Four-way orthologous binding

GFP:

Green fluorescent protein

GO:

Gene ontology

modENCODE:

Model Organism Encyclopedia of DNA Elements

ORF:

Open reading frame

PCA:

Principle component analysis

PWM:

Positional weight matrix

RNA-seq:

RNA sequencing

TF:

Transcription factor

TWOB:

Two-way orthologous binding

UCSC:

University of California, Santa Cruz

UAS:

Upstream activating sequence

References

  1. Dunham I, Kundaje A, Aldred SF et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi:10.1038/nature11247

    Article  CAS  Google Scholar 

  2. Gordon KL, Ruvinsky I (2012) Tempo and mode in evolution of transcriptional regulation. PLoS Genet 8:e1002432. doi:10.1371/journal.pgen.1002432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neph S, Vierstra J, Stergachis AB et al (2012) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489:83–90. doi:10.1038/nature11212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216. doi:10.1038/nrg2063

    Article  CAS  PubMed  Google Scholar 

  5. Kaplan T, Li X-Y, Sabo PJ et al (2011) Quantitative models of the mechanisms that control genome-wide patterns of transcription factor binding during early Drosophila development. PLoS Genet 7:e1001290. doi:10.1371/journal.pgen.1001290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li X-Y, Thomas S, Sabo PJ et al (2011) The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biol 12:R34. doi:10.1186/gb-2011-12-4-r34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zinzen RP, Girardot C, Gagneur J et al (2009) Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 462:65–70. doi:10.1038/nature08531

    Article  CAS  PubMed  Google Scholar 

  8. Fisher WW, Li JJ, Hammonds AS et al (2012) DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila. Proc Natl Acad Sci U S A 109:21330–21335. doi:10.1073/pnas.1209589110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biggin MD (2011) Animal transcription networks as highly connected, quantitative continua. Dev Cell 21:611–626. doi:10.1016/j.devcel.2011.09.008

    Article  CAS  PubMed  Google Scholar 

  10. MacArthur S, Li X-Y, Li J et al (2009) Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol 10:R80. doi:10.1186/gb-2009-10-7-r80

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hare EE, Peterson BK, Iyer VN et al (2008) Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet 4:e1000106. doi:10.1371/journal.pgen.1000106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Arnoult L, Su KFY, Manoel D et al (2013) Emergence and diversification of fly pigmentation through evolution of a gene regulatory module. Science 339:1423–1426. doi:10.1126/science.1233749

    Article  CAS  PubMed  Google Scholar 

  13. Frankel N, Wang S, Stern DL (2012) Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proc Natl Acad Sci U S A 109:20975–20979. doi:10.1073/pnas.1207715109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalay G, Wittkopp PJ (2010) Nomadic enhancers: tissue-specific cis-regulatory elements of yellow have divergent genomic positions among Drosophila species. PLoS Genet 6:e1001222. doi:10.1371/journal.pgen.1001222

    Article  PubMed  PubMed Central  Google Scholar 

  15. Greil F, Moorman C, van Steensel B (2006) DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol 410:342–359

    Article  CAS  PubMed  Google Scholar 

  16. Aleksic J, Russell S (2009) ChIPing away at the genome: the new frontier travel guide. Mol BioSyst 5:1421. doi:10.1039/b906179g

    Article  CAS  PubMed  Google Scholar 

  17. Van Steensel B, Delrow J, Henikoff S (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27:304–308. doi:10.1016/S0076-6879(06)10016-6

    Article  PubMed  Google Scholar 

  18. The modENCODE Consortium, Roy S, Ernst J et al (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–1797. doi:10.1126/science.1198374

    Article  PubMed Central  Google Scholar 

  19. Contrino S, Smith RN, Butano D et al (2011) modMine: flexible access to modENCODE data. Nucleic Acids Res 40:D1082–D1088. doi:10.1093/nar/gkr921

    Article  PubMed  PubMed Central  Google Scholar 

  20. Landt SG, Marinov GK, Kundaje A et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22:1813–1831. doi:10.1101/gr.136184.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trinh QM, Jen F-YA, Zhou Z et al (2013) Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE. BMC Genomics 14:494. doi:10.1186/1471-2164-14-494

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bradley RK, Li X-Y, Trapnell C et al (2010) Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLoS Biol 8:e1000343. doi:10.1371/journal.pbio.1000343

    Article  PubMed  PubMed Central  Google Scholar 

  23. He Q, Bardet AF, Patton B et al (2011) High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species. Nat Genet 43:414–420. doi:10.1038/ng.808

    Article  CAS  PubMed  Google Scholar 

  24. Paris M, Kaplan T, Li XY et al (2013) Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLoS Genet 9:e1003748. doi:10.1371/journal.pgen.1003748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Villar D, Flicek P, Odom DT (2014) Evolution of transcription factor binding in metazoans – mechanisms and functional implications. Nat Rev Genet 15:221–233. doi:10.1038/nrg3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choo SW, White R, Russell S (2011) Genome-wide analysis of the binding of the Hox protein Ultrabithorax and the Hox cofactor Homothorax in Drosophila. PLoS One 6:e14778. doi:10.1371/journal.pone.0014778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vogel MJ, Peric-Hupkes D, van Steensel B (2007) Detection of in vivo protein–DNA interactions using DamID in mammalian cells. Nat Protoc 2:1467–1478. doi:10.1038/nprot.2007.148

    Article  CAS  PubMed  Google Scholar 

  28. Carl SH, Russell S (2015) Common binding by redundant group B Sox proteins is evolutionarily conserved in Drosophila. BMC Genomics 16:292. doi:10.1186/s12864-015-1495-3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210:630–637. doi:10.1007/s004270000110

    Article  CAS  PubMed  Google Scholar 

  30. Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage φC31. Genetics 166:1775–1782. doi:10.1534/genetics.166.4.1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Southall TD, Gold KS, Egger B et al (2013) Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 26:101–112. doi:10.1016/j.devcel.2013.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adryan B, Teichmann SA (2006) FlyTF: a systematic review of site-specific transcription factors in the fruit fly Drosophila melanogaster. Bioinformatics 22:1532–1533. doi:10.1093/bioinformatics/btl143

    Article  CAS  PubMed  Google Scholar 

  33. Hsia CC, McGinnis W (2003) Evolution of transcription factor function. Curr Opin Gen Dev 13:199–206. doi:10.1016/S0959-437X(03)00017-0

    Article  CAS  Google Scholar 

  34. Kim J, He X, Sinha S (2009) Evolution of regulatory sequences in 12 Drosophila species. PLoS Genet 5:e1000330. doi:10.1371/journal.pgen.1000330

    Article  PubMed  PubMed Central  Google Scholar 

  35. Majoros WH, Ohler U (2010) Modeling the evolution of regulatory elements by simultaneous detection and alignment with phylogenetic pair HMMs. PLoS Comput Biol 6:e1001037. doi:10.1371/journal.pcbi.1001037

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sinha S, He X (2007) MORPH: probabilistic alignment combined with hidden Markov models of cis-regulatory modules. PLoS Comput Biol 3:e216. doi:10.1371/journal.pcbi.0030216

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kheradpour P, Stark A, Roy S, Kellis M (2007) Reliable prediction of regulator targets using 12 Drosophila genomes. Genome Res 17:1919–1931. doi:10.1101/gr.7090407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meireles-Filho A, Stark A (2009) Comparative genomics of gene regulation–conservation and divergence of cis-regulatory information. Curr Opin Genet Dev 19:565–570. doi:10.1016/j.gde.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  39. Stark A, Lin MF, Kheradpour P et al (2007) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450:219–232. doi:10.1038/nature06340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Halfon M, Zhu Q, Brennan E, Zhou Y (2011) Erroneous attribution of relevant transcription factor binding sites despite successful prediction of cis-regulatory modules. BMC Genomics 12:578. doi:10.1186/1471-2164-12-578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sikora-Wohlfeld W, Ackermann M, Christodoulou EG et al (2013) Assessing computational methods for transcription factor target gene identification based on ChIP-seq data. PLoS Comput Biol 9:e1003342. doi:10.1371/journal.pcbi.1003342

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gallo SM, Gerrard DT, Miner D et al (2010) REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Res 39:D118–D123. doi:10.1093/nar/gkq999

    Article  PubMed  PubMed Central  Google Scholar 

  43. Griffith OL, Montgomery SB, Bernier B et al (2007) ORegAnno: an open-access community-driven resource for regulatory annotation. Nucleic Acids Res 36:D107–D113. doi:10.1093/nar/gkm967

    Article  PubMed  PubMed Central  Google Scholar 

  44. Arnold CD, Gerlach D, Stelzer C et al (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339:1074–1077. doi:10.1126/science.1232542

    Article  CAS  PubMed  Google Scholar 

  45. Bardet AF, He Q, Zeitlinger J, Stark A (2011) A computational pipeline for comparative ChIP-seq analyses. Nat Protoc 7:45–61. doi:10.1038/nprot.2011.420

    Article  PubMed  Google Scholar 

  46. Fujita PA, Rhead B, Zweig AS et al (2010) The UCSC Genome Browser database: update 2011. Nucliec Acids Res 39:D876–D882. doi:10.1093/nar/gkq963

    Article  Google Scholar 

  47. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aszodi A (2012) MULTOVL: fast multiple overlaps of genomic regions. Bioinformatics 28:3318–3319. doi:10.1093/bioinformatics/bts607

    Article  CAS  PubMed  Google Scholar 

  49. Bailey T, Krajewski P, Ladunga I et al (2013) Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol 9:e1003326. doi:10.1371/journal.pcbi.1003326

    Article  PubMed  PubMed Central  Google Scholar 

  50. Moses AM, Pollard DA, Nix DA et al (2006) Large-scale turnover of functional transcription factor binding sites in Drosophila. PLoS Comput Biol 2:e130. doi:10.1371/journal.pcbi.0020130

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ni X, Zhang YE, Nègre N et al (2012) Adaptive evolution and the birth of CTCF binding sites in the Drosophila genome. PLoS Biol 10:e1001420. doi:10.1371/journal.pbio.1001420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang J, Ramos E, Corces VG (2012) The BEAF-32 insulator coordinates genome organization and function during the evolution of Drosophila species. Genome Res 22:2199–2207. doi:10.1101/gr.142125.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schmidt D, Wilson MD, Ballester B et al (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328:1036–1040. doi:10.1126/science.1186176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schmidt D, Schwalie PC, Wilson MD et al (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148:335–348. doi:10.1016/j.cell.2011.11.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nègre N, Brown CD, Shah PK et al (2010) A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 6:e1000814. doi:10.1371/journal.pgen.1000814

    Article  PubMed  PubMed Central  Google Scholar 

  56. Harrison MM, Li X-Y, Kaplan T et al (2011) Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet 7:e1002266. doi:10.1371/journal.pgen.1002266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Satija R, Bradley RK (2012) The TAGteam motif facilitates binding of 21 sequence-specific transcription factors in the Drosophila embryo. Genome Res 22:656–665. doi:10.1101/gr.130682.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lifanov AP (2003) Homotypic regulatory clusters in Drosophila. Genome Res 13:579–588. doi:10.1101/gr.668403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ferrero E, Fischer B, Russell S (2014) SoxNeuro orchestrates central nervous system specification and differentiation in Drosophila and is only partially redundant with Dichaete. Genome Biol 15:R74. doi:10.1186/gb-2014-15-5-r74

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mohan M, Bartkuhn M, Herold M, Philippen A (2007) The Drosophila insulator proteins CTCF and CP190 link enhancer blocking to body patterning. EMBO J 26:4203–4214. doi:10.1038/sj.emboj.7601851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137:1194–1211. doi:10.1016/j.cell.2009.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  62. Clark AG, Eisen MB, Smith DR et al (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218. doi:10.1038/nature06341

    Article  PubMed  Google Scholar 

  63. Kunarso G, Chia N-Y, Jeyakani J et al (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42:631–634. doi:10.1038/ng.600

    Article  CAS  PubMed  Google Scholar 

  64. Martin D, Pantoja C, Miñán AF et al (2011) Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nat Struct Mol Biol 18:708–714. doi:10.1038/nsmb.2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Massouras A, Waszak SM, Albarca-Aguilera M et al (2012) Genomic variation and its impact on gene expression in Drosophila melanogaster. PLoS Genet 8:e1003055. doi:10.1371/journal.pgen.1003055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hare EE, Peterson BK, Eisen MB et al (2008) A careful look at binding site reorganization in the even-skipped enhancers of Drosophila and Sepsids. PLoS Genet 4:e1000268. doi:10.1371/journal.pgen.1000268

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carl, S., Russell, S. (2015). Comparative Genomics of Transcription Factor Binding in Drosophila . In: Raman, C., Goldsmith, M., Agunbiade, T. (eds) Short Views on Insect Genomics and Proteomics. Entomology in Focus, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-24235-4_7

Download citation

Publish with us

Policies and ethics