Skip to main content

Location of Sarcomas Within Bone: The Growth Plate

  • Chapter
  • First Online:
  • 566 Accesses

Abstract

Most malignant bone tumors are located in the metaphysis of the long bones, near to the growth plate. If the joint is preserved when a tumor is resected, the results in terms of future limb function are better. The growth plate can represent a barrier to tumoral spread. We describe the Cañadell technique, which can be of benefit to patients with metaphyseal tumors but whose physis is free from malignant cells, and which is based on epiphysiolysis by physeal distraction. Two prerequisites for Cañadell’s technique are that the physis is unequivocally open and that the physis has not been invaded by the tumor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alberty A, Peltonen J, Ritsilä V. Effects of distraction and compression on proliferation of growth plate chondrocytes: a study on rabbits. Acta Orthop Scand. 1993;64:449–55.

    Article  CAS  PubMed  Google Scholar 

  2. Alberty A. Effects of physeal distraction on the vascular supply of the growth area: a microangiographical study in rabbits. J Pediatr Orthop. 1993;13:373–7.

    Article  CAS  PubMed  Google Scholar 

  3. Aldegheri R, Trivella G, Lavini F. Epiphyseal distraction. Chondrodiastasis. Clin Orthop Relat Res. 1989;241:117–27.

    Google Scholar 

  4. Alini M, Matsui Y, Dodge GR, Poole AR. The extracellular matrix of cartilage in the growth plate before and during calcification: changes in composition and degradation of type II collagen. Cal Tis Int. 1992;50:327–35.

    Article  CAS  Google Scholar 

  5. Arriola F, Forriol F, Cañadell J. Histomorphometric study of growth plate subjected to different mechanical conditions (compression, tension and neutralization): an experimental study in lambs. J Pediatr Orthop. 2001;10B:334–8.

    Google Scholar 

  6. Betz M, Dumont CE, Fuchs B, Exner GU. Physeal distraction for joint preservation in malignant metaphyseal bone tumors in children. Clin Orthop Relat Res. 2012;470:1749–54.

    Article  PubMed  Google Scholar 

  7. Blumer MJ, Longato S, Fritsch H. Localization of tartrate-resistant acid phosphatase (TRAP), membrane type-1matrix metalloproteinases (MT1-MMP) and macrophages during early endochondral bone formation. J Anat. 2008;213:431–41.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bright RW, Elmore SM. Physical properties of epiphyseal plate cartilage. Surg Forum. 1968;19:463–5.

    CAS  PubMed  Google Scholar 

  9. Brighton CT. The growth plate. Orthop Clin North Am. 1984;15:571–95.

    CAS  PubMed  Google Scholar 

  10. Campanacci L, Manfrini M, Colangeli M, Alí N, Mercuri M. Long-term results in children with massive bone osteoarticular allografts of the knee for high-grade osteosarcoma. J Pediatr Orthop. 2010;30:919–27.

    Article  PubMed  Google Scholar 

  11. Cañadell J, De Pablos J. Correction of angular deformities by physeal distraction. Clin Orthop Relat Res. 1992;283:98–105.

    Google Scholar 

  12. Cañadell J, de Pablos J. Breaking bony bridges by physeal distraction: a new approach. Int Orthop. 1985;9:223–9.

    Article  PubMed  Google Scholar 

  13. Cañadell J, Forriol F, Cara JA. Removal of metaphyseal bone tumours with preservation of the epiphysis: physeal distraction before excision. J Bone Joint Surg (Br). 1994;76-B:127–32.

    Google Scholar 

  14. Cañadell J, Forriol F. Use of mono-axial fixators in leg lengthening. In: Surgical techniques in orthopaedics and traumatology, Ed Scientifiques et Medicales. Paris: Elsevier SAS, 55-570-E-10; 2000, p. 1–5.

    Google Scholar 

  15. Cañadell J, San-Julian M. Pediatric bone sarcomas. Berlin: Springer; 2009.

    Google Scholar 

  16. Codivilla A. On the means of lengthening in the lower limbs, the muscles and the tissues which are shortened through deformity. Am J Orthop Surg. 1905;2:353–69.

    Google Scholar 

  17. Connolly JF, Huurman WW, Lippello L, Pankaj R. Epiphyseal traction to correct acquired growth deformities. Clin Orthop Relat Res. 1986;202:258–68.

    Google Scholar 

  18. Damron TA, Zhang M, Pritchard MR, Middleton FA, Horton JA, Margulies BM, et al. Microarray cluster analysis of irradiated growth plate zones following laser microdissection. Int J Radiat Oncol Biol Phys. 2009;74:949–56.

    Article  PubMed  PubMed Central  Google Scholar 

  19. De Bastiani G, Aldegheri R, Renzi-Brivio L, Trivella G. Chondrodiastasis. Controlled symmetrical distraction of the epiphyseal plate. Limb lengthening in children. J Bone Joint Surg (Br). 1986;66-B:550–6.

    Google Scholar 

  20. De Pablos J, Cañadell J. Experimental physeal distraction in immature sheep. Clin Orthop Relat Res. 1990;250:73–80.

    Google Scholar 

  21. de Pablos J, Villas C, Cañadell J. Bone lengthening by physical distraction: an experimental study. Int Orthop. 1986;10:163–70.

    Article  PubMed  Google Scholar 

  22. Fang B, Yi C, Zhang H, Zhang QW, Li Y, Wei Q, He W. Combined epiphyseal preservation and autograft bone transfer in treatment of children osteosarcoma. Chin J Rep Reconstr Surg. 2013;27:45–9.

    Google Scholar 

  23. Fishbane BM, Riley LH. Continous transphyseal traction: experimental observations. Clin Orthop Relat Res. 1978;136:120–4.

    Google Scholar 

  24. Fjeld TO, Steen H. Limb lengthening by low rate epiphyseal distraction. An experimental study in the caprine tibia. J Orthop Res. 1988;6:360–8.

    Article  CAS  PubMed  Google Scholar 

  25. Forriol F, Cañadell J. Unilateral external fixation in reconstructive surgery. In: Asche G, Roth W, Schroeder L, editors. The external fixator. Standard indications, operating instructions and examples of frame configuration. Reinbeck: Einhorn-Presse Verlag; 2002. p. 175–89.

    Google Scholar 

  26. Forriol F, Shapiro F. Bone development interaction of molecular components and biophysical forces. Clin Orthop Relat Res. 2005;432:14–33.

    Article  Google Scholar 

  27. Gao S, Cai Q, Yao W, Wang JQ, Zhang P, Wang CJ, et al. Epiphyseal distraction for preservation of epiphysis of osteosarcoma in children. Chin J Rep Reconstr Surg. 2012;26:1291–5.

    Google Scholar 

  28. Gebhardt MC, Flugstad DI, Springfield DS, Mankin HJ. The use of bone allografts for limb salvage in high-grade extremity osteosarcoma. Clin Orthop Relat Res. 1991;270:181–96.

    Google Scholar 

  29. Henry SP, Liang S, Akdemir KC, de Crombrugghe B. The postnatal role of Sox9 in cartilage. J Bone Miner Res. 2012;27:2511–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ilizarov GA. The tension-stress effect on the genesis and growth tissue. Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989;239:263–85.

    Google Scholar 

  31. Jani L. Die Distraktionepiphyseolyse: Tierexperimentelle Studie zum Problem der Beinverlängerung. Z Orthop. 1975;113:189–98.

    CAS  PubMed  Google Scholar 

  32. Jani L. Tierexperimentelle Studie über Tibiaverlängerung durch Distrak-tionepiphyseolyse. Z Orthop. 1973;111:627–30.

    CAS  PubMed  Google Scholar 

  33. Jaramillo D, Shapiro F. Growth cartilage: normal appearance, variants and abnormalities. Pediatr Musculoskelet MR Imaging. 1998;6:455–71.

    CAS  Google Scholar 

  34. Jing JJ, Ren Y, Zong Z, Liu CJ, Kamiya N, Mishina Y, et al. BMP receptor 1A determines the cell fate of the postnatal growth plate. Int J Biol Sci. 2013;9:895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kenwright J, Spriggins AJ, Cunningham JL. Response of the growth plate to distraction close to skeletal maturity: is fracture necessary? Clin Orthop Relat Res. 1990;250:61–72.

    Google Scholar 

  36. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423:332–6.

    Article  CAS  PubMed  Google Scholar 

  37. Kuijpers-Jagtman AM, Maltha JC, Bex JHM, Daggers JG. The influence of vascular and periosteal interferences on the histological structure of the growth plates of long bones. Anat Anz. 1987;164:245–54.

    CAS  PubMed  Google Scholar 

  38. Liu Z, Lavine KJ, Hung IH, Ornitz DM. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol. 2007;302:80–91.

    Article  CAS  PubMed  Google Scholar 

  39. Magne D, Julien M, Vinatier C, Meri-Soussi F, Weiss P, Guicheux J. Cartilage formation in growth plate and arteries: from physiology to pathology. Bioessays. 2005;27:708–16.

    Article  CAS  PubMed  Google Scholar 

  40. Monticelli G, Spinelli R. Distraction epiphysiolysis as a method of limb lengthening. I. Experimental study. Clin Orthop Relat Res. 1981;154:254–61.

    Google Scholar 

  41. Monticelli G, Spinelli R. Distraction epiphysiolysis as a method of limb lengthening. II. Morphologic investigations. Clin Orthop Relat Res. 1981;154:262–73.

    Google Scholar 

  42. Monticelli G, Spinelli R. Distraction epiphysiolysis as a method of limb lengthening. III. Clinical applications. Clin Orthop Relat Res. 1981;154:274–85.

    Google Scholar 

  43. Muscolo DL, Ayerza M, Aponte-Tinao L, Ranalletta M. Partial epiphyseal preservation and intercalary allograft reconstruction in high-grade metaphyseal osteosarcoma of the knee. J Bone Joint Surg Am. 2005;87-A suppl 1:226–36.

    Article  Google Scholar 

  44. Muscolo DL, Ayerza MA, Aponte-Tinao LA, Ranalletta M. Use of distal femoral osteoarticular allografts in limb salvage surgery: surgical technique. J Bone Joint Surg Am. 2006;88-A suppl 1:305–21.

    Article  Google Scholar 

  45. Nakamura K, Matsushita T, Okazaki H, Nagano A, Kurokawa T. Attempted limb lengthening by physeal distraction. Clin Orthop Relat Res. 1991;267:306–11.

    Google Scholar 

  46. Noble J, Diamond R, Stirrat CR, Sledge CB. Breaking force of the rabbit growth plate and its application to epiphyseal distraction. Acta Orthop Scand. 1982;53:13–6.

    Article  CAS  PubMed  Google Scholar 

  47. Peltonen J, Alitalo I, Karaharju EO, Helio H. Distraction of the growth plate: experiments in pigs and sheep. Acta Orthop Scand. 1984;55:359–62.

    Article  CAS  PubMed  Google Scholar 

  48. Plumb DA, Ferrara L, Torbica T, Knowles L, Mironov Jr A, Kadler KE, et al. Collagen VII organises the pericellular matrix in the growth plate. PLoS One. 2011;6:29422.

    Article  Google Scholar 

  49. Ring PA. Experimental bone lengthening by epiphyseal distraction. Br J Surg. 1958;46:169–73.

    Article  CAS  PubMed  Google Scholar 

  50. San-Julian M, Aquerreta JD, Benito A, Cañadell J. Indications for epiphyseal preservation in metaphyseal malignant bone tumors of children: relationship between image methods and histological findings. J Pediatr Orthop. 1999;19:543–8.

    Article  CAS  PubMed  Google Scholar 

  51. Shu B, Zhang M, Xie R, Wang M, Jin H, Hou W, et al. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J Cell Sci. 2011;124:3428–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sledge CB, Noble J. Experimental limb lengthening by epiphyseal distraction. Clin Orthop Relat Res. 1978;136:111–9.

    Google Scholar 

  53. Spriggins AJ, Bader DL, Cunningham JL, Kenwright J. Distraction physiolysis in the rabbit. Acta Orthop Scand. 1989;60:154–8.

    Article  CAS  PubMed  Google Scholar 

  54. Steen H, Fjeld TO, Ronningen H, Langeland N, Gjerdet N, Bjerkreim I. Limb lengthening by epiphyseal distraction. An experimental study in the caprine femur. J Orthop Res. 1987;5:592–9.

    Article  CAS  PubMed  Google Scholar 

  55. Takahara M, Naruse T, Takagi M, Orui H, Ogino T. Matrix metalloproteinase-9 expression, tartrate-resistant acid phosphatase activity, and DNA fragmentation in vascular and cellular invasion into cartilage preceding primary endochondral ossification in long bone. J Orthop Res. 2004;22:1050–7.

    Article  CAS  PubMed  Google Scholar 

  56. Tercedor J, Crespo V, Acosta F, Campos A, Fernandez E. Alargamiento tibial por distracción epifisaria proximal. Estudio experimental en conejos. Rev Ortop Traumatol. 1988;32IB:412–6.

    Google Scholar 

  57. Trueta J, Amato VP. The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg (Br). 1960;42-B:571–87.

    CAS  Google Scholar 

  58. Wuelling M, Vortkamp A. Chondrocyte proliferation and differentiation. Endocr Dev. 2011;21:1–11.

    Article  CAS  PubMed  Google Scholar 

  59. Yao W, Cai Q, Gao S, Wang JQ, Zhang P, Wang X. Epiphysis preserving by physeal distraction for treatment of femur osteosarcoma in children. Chin J Rep Reconstr Surg. 2013;27:423–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Forriol MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Forriol, F., San-Julian, M., Cañadell†, J. (2016). Location of Sarcomas Within Bone: The Growth Plate. In: San-Julian, M. (eds) Cañadell's Pediatric Bone Sarcomas. Springer, Cham. https://doi.org/10.1007/978-3-319-24220-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24220-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24218-7

  • Online ISBN: 978-3-319-24220-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics