Skip to main content

Antimicrobial Peptides: Maintaining Sterility of the Urinary Tract

  • Chapter
  • First Online:
Antimicrobial Peptides

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

  • 1325 Accesses

Abstract

Due to its close proximity to the gastrointestinal tract, the normally sterile urinary tract is constantly challenged by microbial invasion. To counter this microbial assault, the urinary tract has developed a highly effective antimicrobial “shield” that can rapidly eliminate invading pathogens or prevent their growth. During recent years, considerable advances have been made in our understanding of the immune mechanisms that contribute to urinary tract sterility. Recent evidence indicates that cationic antimicrobial peptides contribute to the innate host defense of the urinary tract. This chapter reviews the published literature on the role(s) of antimicrobial peptides (AMPs) in maintaining urinary tract sterility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrink M, Larsson E, Gobl A, Hellman L (2000) Expression of lactoferrin in the kidney: implications for innate immunity and iron metabolism. Kidney Int 57:2004–2010

    Article  CAS  PubMed  Google Scholar 

  • Ali AS, Townes CL, Hall J, Pickard RS (2009) Maintaining a sterile urinary tract: the role of antimicrobial peptides. J Urol 182:21–28

    Article  CAS  PubMed  Google Scholar 

  • Bachur RG, Harper MB (2001) Predictive model for serious bacterial infections among infants younger than 3 months of age. Pediatrics 108:311–316

    Article  CAS  PubMed  Google Scholar 

  • Bals R, Goldman MJ, Wilson JM (1998) Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun 66:1225–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bates JM, Raffi HM, Prasadan K, Mascarenhas R, Laszik Z, Maeda N, Hultgren SJ, Kumar S (2004) Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 65:791–797

    Article  CAS  PubMed  Google Scholar 

  • Becknell B, Spencer JD, Carpenter AR, Chen X, Singh A, Ploeger S, Kline J, Ellsworth P, Li B, Proksch E, Schwaderer AL, Hains DS, Justice SS, McHugh KM (2013) Expression and antimicrobial function of beta-defensin 1 in the lower urinary tract. PLoS One 8:e77714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becknell B, Eichler TE, Beceiro S, Li B, Easterling RS, Carpenter AR, James CL, McHugh KM, Hains DS, Partida-Sanchez S, Spencer JD (2015) Ribonucleases 6 and 7 have antimicrobial function in the human and murine urinary tract. Kidney Int 87(1):151–161

    Article  CAS  PubMed  Google Scholar 

  • Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73:472–479

    Article  CAS  PubMed  Google Scholar 

  • Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A, Wakeham A, Fong HE, Cheung CC, Mak TW (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A 103:1834–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boix E, Nogues MV (2007) Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol Biosyst 3:317–335

    Article  CAS  PubMed  Google Scholar 

  • Chassin C, Tourneur E, Bens M, Vandewalle A (2011) A role for collecting duct epithelial cells in renal antibacterial defences. Cell Microbiol 13:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Chromek M (2015) The role of the antimicrobial peptide cathelicidin in renal diseases. Pediatr Nephrol 30(8):1225–1232

    Article  PubMed  Google Scholar 

  • Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I, Hokfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641

    Article  CAS  PubMed  Google Scholar 

  • Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921

    Article  CAS  PubMed  Google Scholar 

  • Foxman B, Barlow R, D’Arcy H, Gillespie B, Sobel JD (2000) Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol 10:509–515

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  CAS  PubMed  Google Scholar 

  • Harder J, Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277:46779–46784

    Article  CAS  PubMed  Google Scholar 

  • Haversen LA, Engberg I, Baltzer L, Dolphin G, Hanson LA, Mattsby-Baltzer I (2000) Human lactoferrin and peptides derived from a surface-exposed helical region reduce experimental Escherichia coli urinary tract infection in mice. Infect Immun 68:5816–5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawthorn LA, Bruce AW, Reid G (1991) Ability of uropathogens to bind to Tamm Horsfall protein-coated renal tubular cells. Urol Res 19:301–304

    Article  CAS  PubMed  Google Scholar 

  • Hertting O, Holm A, Luthje P, Brauner H, Dyrdak R, Jonasson AF, Wiklund P, Chromek M, Brauner A (2010) Vitamin D induction of the human antimicrobial Peptide cathelicidin in the urinary bladder. PLoS One 5:e15580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiratsuka T, Nakazato M, Ihi T, Minematsu T, Chino N, Nakanishi T, Shimizu A, Kangawa K, Matsukura S (2000) Structural analysis of human beta-defensin-1 and its significance in urinary tract infection. Nephron 85:34–40

    Article  CAS  PubMed  Google Scholar 

  • Holmes MA, Paulsene W, Jide X, Ratledge C, Strong RK (2005) Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure 13:29–41

    Article  CAS  PubMed  Google Scholar 

  • Huang YC, Lin YM, Chang TW, Wu SJ, Lee YS, Chang MD, Chen C, Wu SH, Liao YD (2007) The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. J Biol Chem 282:4626–4633

    Article  CAS  PubMed  Google Scholar 

  • Huttner KM, Kozak CA, Bevins CL (1997) The mouse genome encodes a single homolog of the antimicrobial peptide human beta-defensin 1. FEBS Lett 413:45–49

    Article  CAS  PubMed  Google Scholar 

  • Ihi T, Nakazato M, Mukae H, Matsukura S (1997) Elevated concentrations of human neutrophil peptides in plasma, blood, and body fluids from patients with infections. Clin Infect Dis 25:1134–1140

    Article  CAS  PubMed  Google Scholar 

  • Krause A, Neitz S, Magert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147–150

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol 11:105–128

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhao C, Heng HH, Ganz T (1997) The human beta-defensin-1 and alpha-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 43:316–320

    Article  CAS  PubMed  Google Scholar 

  • Mo L, Zhu XH, Huang HY, Shapiro E, Hasty DL, Wu XR (2004) Ablation of the Tamm-Horsfall protein gene increases susceptibility of mice to bladder colonization by type 1-fimbriated Escherichia coli. Am J Physiol Renal Physiol 286:F795–F802

    Article  CAS  PubMed  Google Scholar 

  • Morrison GM, Davidson DJ, Kilanowski FM, Borthwick DW, Crook K, Maxwell AI, Govan JR, Dorin JR (1998) Mouse beta defensin-1 is a functional homolog of human beta defensin-1. Mamm Genome 9:453–457

    Article  CAS  PubMed  Google Scholar 

  • Morrison G, Kilanowski F, Davidson D, Dorin J (2002) Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 70:3053–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497

    Article  CAS  PubMed  Google Scholar 

  • Mulvey MA, Schilling JD, Martinez JJ, Hultgren SJ (2000) Bad bugs and beleaguered bladders: interplay between uropathogenic Escherichia coli and innate host defenses. Proc Natl Acad Sci U S A 97:8829–8835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navid F, Boniotto M, Walker C, Ahrens K, Proksch E, Sparwasser T, Muller W, Schwarz T, Schwarz A (2012) Induction of regulatory T cells by a murine beta-defensin. J Immunol 188:735–743

    Article  CAS  PubMed  Google Scholar 

  • Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR (2001) Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276:9924–9930

    Article  CAS  PubMed  Google Scholar 

  • Paragas N, Qiu A, Zhang Q, Samstein B, Deng SX, Schmidt-Ott KM, Viltard M, Yu W, Forster CS, Gong G, Liu Y, Kulkarni R, Mori K, Kalandadze A, Ratner AJ, Devarajan P, Landry DW, D’Agati V, Lin CS, Barasch J (2011) The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med 17:216–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paragas N, Kulkarni R, Werth M, Schmidt-Ott KM, Forster C, Deng R, Zhang Q, Singer E, Klose AD, Shen TH, Francis KP, Ray S, Vijayakumar S, Seward S, Bovino ME, Xu K, Takabe Y, Amaral FE, Mohan S, Wax R, Corbin K, Sanna-Cherchi S, Mori K, Johnson L, Nickolas T, D’Agati V, Lin CS, Qiu A, Al-Awqati Q, Ratner AJ, Barasch J (2014) alpha-Intercalated cells defend the urinary system from bacterial infection. J Clin Invest 124:2963–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810

    Article  CAS  PubMed  Google Scholar 

  • Porter EM, Poles MA, Lee JS, Naitoh J, Bevins CL, Ganz T (1998) Isolation of human intestinal defensins from ileal neobladder urine. FEBS Lett 434:272–276

    Article  CAS  PubMed  Google Scholar 

  • Porter E, Yang H, Yavagal S, Preza GC, Murillo O, Lima H, Greene S, Mahoozi L, Klein-Patel M, Diamond G, Gulati S, Ganz T, Rice PA, Quayle AJ (2005) Distinct defensin profiles in Neisseria gonorrhoeae and Chlamydia trachomatis urethritis reveal novel epithelial cell-neutrophil interactions. Infect Immun 73:4823–4833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip KP, Mok SC (1998) Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 152:1247–1258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ragnarsdottir B, Svanborg C (2012) Susceptibility to acute pyelonephritis or asymptomatic bacteriuria: host-pathogen interaction in urinary tract infections. Pediatr Nephrol 27:2017–2029

    Article  PubMed  Google Scholar 

  • Rosenberg HF (2008) RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol 83:1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr (2002) Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc Natl Acad Sci U S A 99:2129–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simanski M, Dressel S, Glaser R, Harder J (2010) RNase 7 protects healthy skin from Staphylococcus aureus colonization. J Invest Dermatol 130:2836–2838

    Article  CAS  PubMed  Google Scholar 

  • Sobel JD (1997) Pathogenesis of urinary tract infection. Role of host defenses. Infect Dis Clin North Am 11:531–549

    Article  CAS  PubMed  Google Scholar 

  • Spencer JD, Schwaderer A, McHugh K, Vanderbrink B, Becknell B, Hains DS (2011a) The demographics and costs of inpatient vesicoureteral reflux management in the USA. Pediatr Nephrol 26(11):1995–2001

    Article  PubMed  Google Scholar 

  • Spencer JD, Schwaderer AL, Dirosario JD, McHugh KM, McGillivary G, Justice SS, Carpenter AR, Baker PB, Harder J, Hains DS (2011b) Ribonuclease 7 is a potent antimicrobial peptide within the human urinary tract. Kidney Int 80(2):174–180

    Article  CAS  PubMed  Google Scholar 

  • Spencer JD, Hains DS, Porter E, Bevins CL, DiRosario J, Becknell B, Wang H, Schwaderer AL (2012) Human alpha defensin 5 expression in the human kidney and urinary tract. PLoS One 7:e31712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JD, Schwaderer AL, Wang H, Bartz J, Kline J, Eichler T, Desouza KR, Sims-Lucas S, Baker P, Hains DS (2013) Ribonuclease 7, an antimicrobial peptide upregulated during infection, contributes to microbial defense of the human urinary tract. Kidney Int 83(4):615–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer JD, Schwaderer AL, Becknell B, Watson J, Hains DS (2014a) The innate immune response during urinary tract infection and pyelonephritis. Pediatr Nephrol 29(7):1139–1149

    Article  PubMed  Google Scholar 

  • Spencer JD, Schwaderer AL, Eichler T, Wang H, Kline J, Justice SS, Cohen DM, Hains DS (2014b) An endogenous ribonuclease inhibitor regulates the antimicrobial activity of ribonuclease 7 in the human urinary tract. Kidney Int 85(5):1179–1191

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov I, Rebenok A, Chyzh A (1997) A study of interleukin-8 and defensins in urine and plasma of patients with pyelonephritis and glomerulonephritis. Nephrol Dial Transplant 12:2557–2561

    Article  CAS  PubMed  Google Scholar 

  • Townes CL, Ali A, Robson W, Pickard R, Hall J (2011) Tolerance of bacteriuria after urinary diversion is linked to antimicrobial peptide activity. Urology 77(509):e501–e508

    Google Scholar 

  • Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB Jr, Ganz T (1998) Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 101:1633–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Adelsberg J, Edwards JC, Takito J, Kiss B, al-Awqati Q (1994) An induced extracellular matrix protein reverses the polarity of band 3 in intercalated epithelial cells. Cell 76:1053–1061

    Article  PubMed  Google Scholar 

  • Vandewalle A (2008) Toll-like receptors and renal bacterial infections. Chang Gung Med J 31:525–537

    PubMed  Google Scholar 

  • Wang AP, Su YP, Shen MQ, Chen F, Chen M, Wang JP (2010) Antibacterial activity and mechanism of recombinant human alpha defensin 5 against clinical antibiotic-resistant strains. Afr J Microbiol Res 4:626–633

    Google Scholar 

  • Wang H, Schwaderer AL, Kline J, Spencer JD, Kline D, Hains DS (2013) Contribution of structural domains to ribonuclease 7’s activity against uropathogenic bacteria. Antimicrob Agents Chemother 57(2):766–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weichhart T, Haidinger M, Horl WH, Saemann MD (2008) Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest 38(Suppl 2):29–38

    Article  CAS  PubMed  Google Scholar 

  • Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC (2002) Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood 100:3776–3781

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Deng S, Thomas CJ, Liu Y, Zhang YQ, Rinderspacher A, Huang W, Gong G, Wyler M, Cayanis E, Aulner N, Tobben U, Chung C, Pampou S, Southall N, Vidovic D, Schurer S, Branden L, Davis RE, Staudt LM, Inglese J, Austin CP, Landry DW, Smith DH, Auld DS (2008) Identification of N-(quinolin-8-yl)benzenesulfonamides as agents capable of down-regulating NFkappaB activity within two separate high-throughput screens of NFkappaB activation. Bioorg Med Chem Lett 18:329–335

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Liu ZH, Tewary P, Chen Q, de la Rosa G, Oppenheim JJ (2007) Defensin participation in innate and adaptive immunity. Curr Pharm Des 13:3131–3139

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2007) Antimicrobial peptides, innate immunity, and the normally sterile urinary tract. J Am Soc Nephrol 18:2810–2816

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2013) The antibacterial shield of the human urinary tract. Kidney Int 83:548–550

    Article  CAS  PubMed  Google Scholar 

  • Zhou YS, Webb S, Lettice L, Tardif S, Kilanowski F, Tyrrell C, Macpherson H, Semple F, Tennant P, Baker T, Hart A, Devenney P, Perry P, Davey T, Barran P, Barratt CL, Dorin JR (2013) Partial deletion of chromosome 8 beta-defensin cluster confers sperm dysfunction and infertility in male mice. PLoS Genet 9:e1003826

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucht HD, Grabowsky J, Schrader M, Liepke C, Jurgens M, Schulz-Knappe P, Forssmann WG (1998) Human beta-defensin-1: a urinary peptide present in variant molecular forms and its putative functional implication. Eur J Med Res 3:315–323

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John David Spencer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Becknell, B., Spencer, J.D. (2016). Antimicrobial Peptides: Maintaining Sterility of the Urinary Tract. In: Harder, J., Schröder, JM. (eds) Antimicrobial Peptides. Birkhäuser Advances in Infectious Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24199-9_4

Download citation

Publish with us

Policies and ethics