Skip to main content

Antimicrobial Peptides as Endogenous Antibacterials and Antivirals at the Ocular Surface

  • Chapter
  • First Online:
Antimicrobial Peptides

Abstract

Ocular surface infections are a significant cause of blindness worldwide particularly in developing countries and are mainly caused by bacteria, fungal species, and parasites as well as by viruses. Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus pneumonia, and Pseudomonas aeruginosa are reported to be the most common bacteria associated with keratitis where the most frequent viruses leading to ocular surface infection are herpes simplex, adenovirus, and vaccinia virus. The eye and its adnexa have evolved a bulk of defense strategies to prevent microbial invasion. These include important components of the innate defense system in form of classical antimicrobial compounds as well as members of the cationic antimicrobial peptide family, distinct surfactant proteins, and potential new candidate molecules contributing to antimicrobial protection. Several of them are studied at the ocular surface not only for their antimicrobial properties, but based on easy topical application possibilities for their potential therapeutic effects. As several reviews already summarized the current knowledge with regard to the eye, this chapter will only briefly recapitulate the current knowledge of antimicrobial compound expression in the eye and then will focus on infectious keratitis resulting from bacterial and viral infection. In addition, the potential of using such peptides as therapeutics for treating bacterial and viral ocular surface infections will be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin A, Mohammed I, Hopkinson A et al (2008) A novel antimicrobial peptide on the ocular surface shows decreased expression in inflammation and infection. Invest Ophthalmol Vis Sci 49:28–33

    Article  PubMed  Google Scholar 

  • Boix E, Nogues MV (2007) Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol Biosyst 3:317–335

    Article  CAS  PubMed  Google Scholar 

  • Brandt CR (2014) Peptide therapeutics for treating ocular surface infections. J Ocul Pharmacol Ther Off J Assoc Ocul Pharmacol Ther 30:691–699

    Article  CAS  Google Scholar 

  • Brandt CR, Akkarawongsa R, Altmann S et al (2007) Evaluation of a theta-defensin in a Murine model of herpes simplex virus type 1 keratitis. Invest Ophthalmol Vis Sci 48:5118–5124

    Article  PubMed  Google Scholar 

  • Choi KY, Chow LN, Mookherjee N (2012) Cationic host defence peptides: multifaceted role in immune modulation and inflammation. J Innate Immun 4:361–370

    CAS  PubMed  Google Scholar 

  • Cocchi F, Devico AL, Lu W et al (2012) Soluble factors from T cells inhibiting X4 strains of HIV are a mixture of beta chemokines and RNases. Proc Natl Acad Sci U S A 109:5411–5416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole N, Hume EBH, Vijay AK et al (2010) In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest Ophthalmol Vis Sci 51:390–395

    Article  PubMed  Google Scholar 

  • Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Luca M, Maccari G, Nifosi R (2014) Treatment of microbial biofilms in the post-antibiotic era: prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools. Pathog Dis 70:257–270

    Article  PubMed  Google Scholar 

  • Diler E, Schicht M, Rabung A et al (2014) The novel surfactant protein SP-H enhances the phagocytosis efficiency of macrophage-like cell lines U937 and MH-S. BMC Res Notes 7:851

    Article  PubMed  PubMed Central  Google Scholar 

  • Domachowske JB, Bonville CA, Dyer KD et al (1998) Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res 26:5327–5332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domingues MM, Lopes SC, Santos NC et al (2009) Fold-unfold transitions in the selectivity and mechanism of action of the N-terminal fragment of the bactericidal/permeability-increasing protein (rBPI(21)). Biophys J 96:987–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta D, Willcox MD (2014) Antimicrobial contact lenses and lens cases: a review. Eye Contact Lens 40:312–324

    Article  PubMed  Google Scholar 

  • Dutta D, Cole N, Kumar N et al (2013) Broad spectrum antimicrobial activity of melimine covalently bound to contact lenses. Invest Ophthalmol Vis Sci 54:175–182

    Article  CAS  PubMed  Google Scholar 

  • Garreis F, Schlorf T, Worlitzsch D et al (2010) Roles of human beta-defensins in innate immune defense at the ocular surface: arming and alarming corneal and conjunctival epithelial cells. Histochem Cell Biol 134:59–73

    Article  CAS  PubMed  Google Scholar 

  • Garreis F, Gottschalt M, Schlorf T et al (2011) Expression and regulation of antimicrobial peptide psoriasin (S100A7) at the ocular surface and in the lacrimal apparatus. Invest Ophthalmol Vis Sci 52:4914–4922

    Article  CAS  PubMed  Google Scholar 

  • Gayton JL (2009) Etiology, prevalence, and treatment of dry eye disease. Clin Ophthalmol 3:405–412

    Article  PubMed  PubMed Central  Google Scholar 

  • Groot F, Sanders RW, Ter Brake O et al (2006) Histatin 5-derived peptide with improved fungicidal properties enhances human immunodeficiency virus type 1 replication by promoting viral entry. J Virol 80:9236–9243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwyer Findlay E, Currie SM, Davidson DJ (2013) Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs Clin Immunother Biopharm Gene Ther 27:479–493

    CAS  Google Scholar 

  • Harrod KS, Trapnell BC, Otake K et al (1999) SP-A enhances viral clearance and inhibits inflammation after pulmonary adenoviral infection. Am J Physiol 277:L580–L588

    CAS  PubMed  Google Scholar 

  • Hazlett L, Wu M (2011) Defensins in innate immunity. Cell Tissue Res 343:175–188

    Article  CAS  PubMed  Google Scholar 

  • Hazrati E, Galen B, Lu W et al (2006) Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol 177:8658–8666

    Article  CAS  PubMed  Google Scholar 

  • Huang LC, Reins RY, Gallo RL et al (2007) Cathelicidin-deficient (Cnlp -/-) mice show increased susceptibility to Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 48:4498–4508

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang SA, Kim H, Lee JY et al (2012) Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides 34:283–289

    Article  CAS  PubMed  Google Scholar 

  • Karsten E, Watson SL, Foster LJ (2012) Diversity of microbial species implicated in keratitis: a review. Open ophthalmol J 6:110–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaye S, Choudhary A (2006) Herpes simplex keratitis. Prog Retin Eye Res 25:355–380

    Article  PubMed  Google Scholar 

  • Kishore U, Greenhough TJ, Waters P et al (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43:1293–1315

    Article  CAS  PubMed  Google Scholar 

  • Klotman ME, Chang TL (2006) Defensins in innate antiviral immunity. Nat Rev Immunol 6:447–456

    Article  CAS  PubMed  Google Scholar 

  • Kolar SS, Mcdermott AM (2011) Role of host-defence peptides in eye diseases. Cell Mol Life Sci CMLS 68:2201–2213

    Article  CAS  PubMed  Google Scholar 

  • Kragol G, Lovas S, Varadi G et al (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson WE, Crossno PF, Polosukhin VV et al (2008) Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol 294:L1119–L1126

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Cole AM, Selsted ME (2012) theta-Defensins: cyclic peptides with endless potential. J Biol Chem 287:27014–27019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AM, Whitsett JA, Hartshorn KL et al (2001) Surfactant protein D enhances clearance of influenza A virus from the lung in vivo. J Immunol 167:5868–5873

    Article  CAS  PubMed  Google Scholar 

  • Lobo DS, Pereira IB, Fragel-Madeira L et al (2007) Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 46:987–996

    Article  CAS  PubMed  Google Scholar 

  • Ma G, Greenwell-Wild T, Lei K et al (2004) Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. J Exp Med 200:1337–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews SM, Spallholz JE, Grimson MJ et al (2006) Prevention of bacterial colonization of contact lenses with covalently attached selenium and effects on the rabbit cornea. Cornea 25:806–814

    Article  PubMed  Google Scholar 

  • McDermott AM (2013) Antimicrobial compounds in tears. Exp Eye Res 117:53–61

    Article  CAS  PubMed  Google Scholar 

  • Mohammed I, Abedin A, Tsintzas K et al (2011) Increased expression of hepcidin and toll-like receptors 8 and 10 in viral keratitis. Cornea 30:899–904

    Article  PubMed  Google Scholar 

  • Mun J, Tam C, Chan G et al (2013) MicroRNA-762 is upregulated in human corneal epithelial cells in response to tear fluid and Pseudomonas aeruginosa antigens and negatively regulates the expression of host defense genes encoding RNase7 and ST2. PLoS One 8, e57850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otri AM, Mohammed I, Al-Aqaba MA et al (2012) Variable expression of human Beta defensins 3 and 9 at the human ocular surface in infectious keratitis. Invest Ophthalmol Vis Sci 53:757–761

    Article  CAS  PubMed  Google Scholar 

  • Paulsen FP, Berry MS (2006) Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog Histochem Cytochem 41:1–53

    Article  CAS  PubMed  Google Scholar 

  • Peuravuori H, Aho VV, Aho HJ et al (2006) Bactericidal/permeability-increasing protein in lacrimal gland and in tears of healthy subjects. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle. Ophthalmologie 244:143–148

    CAS  Google Scholar 

  • Pillay K, Coutsoudis A, Agadzi-Naqvi AK et al (2001) Secretory leukocyte protease inhibitor in vaginal fluids and perinatal human immunodeficiency virus type 1 transmission. J Infect Dis 183:653–656

    Article  CAS  PubMed  Google Scholar 

  • Qu XD, Lehrer RI (1998) Secretory phospholipase A2 is the principal bactericide for staphylococci and other gram-positive bacteria in human tears. Infect Immun 66:2791–2797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe AM, St Leger AJ, Jeon S et al (2013) Herpes keratitis. Prog Retin Eye Res 32:88–101

    Article  CAS  PubMed  Google Scholar 

  • Sack RA, Conradi L, Krumholz D et al (2005) Membrane array characterization of 80 chemokines, cytokines, and growth factors in open- and closed-eye tears: angiogenin and other defense system constituents. Invest Ophthalmol Vis Sci 46:1228–1238

    Article  PubMed  Google Scholar 

  • Sallenave JM (2010) Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 42:635–643

    Article  CAS  PubMed  Google Scholar 

  • Sathe S, Sakata M, Beaton AR et al (1998) Identification, origins and the diurnal role of the principal serine protease inhibitors in human tear fluid. Curr Eye Res 17:348–362

    Article  CAS  PubMed  Google Scholar 

  • Schicht M (2012) Humane Surfactant Proteine: Detektion und Charakterisierung. Halle, Univ., Naturwissenschaftliche Fakultät I, Diss

    Google Scholar 

  • Schicht M, Posa A, Paulsen F et al (2010) The ocular surfactant system and its relevance in the dry eye. Klin Monbl Augenheilkd 227:864–870

    Article  CAS  PubMed  Google Scholar 

  • Schroeder BO, Wu Z, Nuding S et al (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469:419–423

    Article  CAS  PubMed  Google Scholar 

  • Semple F, Dorin JR (2012) beta-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun 4:337–348

    Article  CAS  PubMed  Google Scholar 

  • Simanski M, Koten B, Schroder JM et al (2012) Antimicrobial RNases in cutaneous defense. J Innate Immun 4:241–247

    Article  CAS  PubMed  Google Scholar 

  • Stern ME, Beuerman RW, Fox RI et al (1998) The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea 17:584–589

    Article  CAS  PubMed  Google Scholar 

  • Tiffany JM (2008) The normal tear film. Dev Ophthalmol 41:1–20

    Article  PubMed  Google Scholar 

  • Tran D, Tran P, Roberts K et al (2008) Microbicidal properties and cytocidal selectivity of rhesus macaque theta defensins. Antimicrob Agents Chemother 52:944–953

    Article  CAS  PubMed  Google Scholar 

  • Tseng CC, Tseng CP (2000) Identification of a novel secretory leukocyte protease inhibitor-binding protein involved in membrane phospholipid movement. FEBS Lett 475:232–236

    Article  CAS  PubMed  Google Scholar 

  • Vandamme D, Landuyt B, Luyten W et al (2012) A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280:22–35

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2014) Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 7:545–594

    Article  CAS  Google Scholar 

  • Wang W, Owen SM, Rudolph DL et al (2004) Activity of alpha- and theta-defensins against primary isolates of HIV-1. J Immunol 173:515–520

    Article  CAS  PubMed  Google Scholar 

  • Wiesner J, Vilcinskas A (2010) Antimicrobial peptides: the ancient arm of the human immune system. Virulence 1:440–464

    Article  PubMed  Google Scholar 

  • Wilson SS, Wiens ME, Smith JG (2013) Antiviral mechanisms of human defensins. J Mol Biol 425:4965–4980

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Mcclellan SA, Barrett RP et al (2009) Beta-defensins 2 and 3 together promote resistance to Pseudomonas aeruginosa keratitis. J Immunol 183:8054–8060

    Article  CAS  PubMed  Google Scholar 

  • Yasin B, Wang W, Pang M et al (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 78:5147–5156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR (2010) Platelets in defense against bacterial pathogens. Cell Mol Life Sci CMLS 67:525–544

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zhao SZ, Koh SK et al (2012) In-depth analysis of the human tear proteome. J Proteomics 75:3877–3885

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Kumar A, Ozkan J et al (2008) Fimbrolide-coated antimicrobial lenses: their in vitro and in vivo effects. Optom Vis Sci Off Publ Am Acad Optom 85:292–300

    Article  Google Scholar 

Download references

Acknowledgment

We would like to thank Jörg Pekarsky, Department of Anatomy II, FAU Erlangen, Germany, for drawing Figures 2.1 + 2.2 and Gerd Geerling, Director and Head, Department of Ophthalmology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany, for providing us with Figure 2.3. Supported by Deutsche Forschungsgemeinschaft (DFG) grant PA738/9-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Paulsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garreis, F., Schicht, M., Paulsen, F. (2016). Antimicrobial Peptides as Endogenous Antibacterials and Antivirals at the Ocular Surface. In: Harder, J., Schröder, JM. (eds) Antimicrobial Peptides. Birkhäuser Advances in Infectious Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24199-9_2

Download citation

Publish with us

Policies and ethics