Advertisement

Optimal Tests for State-Independent Contextuality

Chapter
  • 376 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In the previous chapter, we discussed the problem of finding tight inequalities for a given measurement scenario and the computational difficulties associated with it. The design of tests of quantum versus HV theories usually involves as a first step the derivation of tight inequalities, i.e., the optimal inequalities corresponding to the boundaries of the classical set of probabilities, and subsequently the search for a quantum state and observables giving the maximal violation.

Keywords

Quantum State Sequential Measurement Previous Chapter Joint Measurement Maximal Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Yu, C.H. Oh, Phys. Rev. Lett. 108, 030402 (2012). doi: 10.1103/PhysRevLett.108.030402
  2. 2.
    M. Kleinmann, C. Budroni, J.-Å. Larsson, O. Gühne, A. Cabello, Phys. Rev. Lett. 109, 250402 (2012). doi: 10.1103/PhysRevLett.109.250402
  3. 3.
    E. Amselem, M. Bourennane, C. Budroni, A. Cabello, O. Gühne, M. Kleinmann, J. Å. Larsson, Phys. Rev. Lett 110, 078901 (2013). doi: 10.1103/PhysRevLett.110.078901
  4. 4.
    B. Jungnitsch, S. Niekamp, M. Kleinmann, O. Gühne, H. Lu, W.-B. Gao, Y.-A. Chen, Z.-B. Chen, Phys. Rev. Lett. 104, 210401 (2010). doi: 10.1103/PhysRevLett.104.210401
  5. 5.
  6. 6.
    I. Pitowsky, Quantum Probability—Quantum Logic, Lecture Notes in Physics (Springer, Berlin, 1989)Google Scholar
  7. 7.
    J.S. Bell, Rev. Mod. Phys. 38, 447 (1966). doi: 10.1103/RevModPhys.38.447 Google Scholar
  8. 8.
    S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967). doi: 10.1512/iumj.1968.17.17004 Google Scholar
  9. 9.
    A. Cabello, arXiv:1112.5149 (2011)
  10. 10.
    R. Ramanathan, P. Horodecki, Phys. Rev. Lett. 112, 040404 (2014). doi: 10.1103/PhysRevLett.112.040404
  11. 11.
    A. Cabello, Phys. Rev. A 82, 032110 (2010). doi: 10.1103/PhysRevA.82.032110
  12. 12.
    A. Cabello, J.M. Estebaranz, G. García-Alcaine, Phys. Lett. A 212, 183 (1996). doi: 10.1016/0375-9601(96)00134-X Google Scholar
  13. 13.
    S. Yu, C.H. Oh, arXiv:1112.5513 (2011)
  14. 14.
    A. Cabello, Phys. Rev. Lett. 101, 210401 (2008). doi: 10.1103/PhysRevLett.101.210401
  15. 15.
    O. Gühne, M. Kleinmann, A. Cabello, J.-ÅLarsson, G. Kirchmair, F. Zähringer, R. Gerritsma, C.F. Roos, Phys. Rev. A 81, 022121 (2010). doi: 10.1103/PhysRevA.81.022121
  16. 16.
    G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, C.F. Roos, Nature (London) 460, 494 (2009). doi: 10.1038/nature08172 Google Scholar
  17. 17.
    C. Zu, Y.-X. Wang, D.-L. Deng, X.-Y. Chang, K. Liu, P.-Y. Hou, H.-X. Yang, L.-M. Duan, Phys. Rev. Lett. 109, 150401 (2012). doi: 10.1103/PhysRevLett.109.150401
  18. 18.
    X. Zhang, M. Um, J. Zhang, S. An, Y. Wang, D.-L. Deng, C. Shen, L.-M. Duan, K. Kim, Phys. Rev. Lett. 110, 070401 (2013). doi: 10.1103/PhysRevLett.110.070401
  19. 19.
    X. Zhang, M. Um, J. Zhang, S. An, Y. Wang, D.-L. Deng, C. Shen, L.-M. Duan, K. Kim, arXiv:1209.3831 (2012)
  20. 20.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969). doi: 10.1103/PhysRevLett.23.880 Google Scholar
  21. 21.
    J.F. Clauser, M.A. Horne, Phys. Rev. D 10, 526 (1974). doi: 10.1103/PhysRevD.10.526 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of SiegenSiegenGermany

Personalised recommendations