Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 441 Accesses

Abstract

The notion of probability is intimately related to the notion of uncertainty, and the latter arises in the description of physical systems at various levels and in different ways. In particular, the probabilistic structure arising in quantum mechanics (QM) has been recognized to be of a rather different kind with respect to its classical counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993)

    MATH  Google Scholar 

  2. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935). doi:10.1103/PhysRev.47.777

    Google Scholar 

  3. J.S. Bell, Physics 1, 195 (1964)

    Google Scholar 

  4. J.S. Bell, Rev. Mod. Phys. 38, 447 (1966). doi:10.1103/RevModPhys.38.447

    Google Scholar 

  5. S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967). doi:10.1512/iumj.1968.17.17004

    Google Scholar 

  6. A. Fine, Phys. Rev. Lett. 48, 291 (1982). doi:10.1103/PhysRevLett.48.291

    Google Scholar 

  7. I. Pitowsky, J. Math. Phys. 27, 1556 (1986). doi:10.1063/1.527066

    Google Scholar 

  8. A.J. Leggett, A. Garg, Phys. Rev. Lett. 54, 857 (1985). doi:10.1103/PhysRevLett.54.857

    Google Scholar 

  9. M.A. Nielsen, I.L. Chuang, Quantum Com- putation and Quantum Information (Cambridge University Press, Cambridge 2000)

    Google Scholar 

  10. P.W. Shor, SIAM J. Comput., 26 (5), 148 (1997). doi:10.1137/S0097539795293172

    Google Scholar 

  11. S. Loyd, Science 273, 1073 (1996). doi:10.1126/science.273.5278.1073

    Google Scholar 

  12. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, Phys. Rev.Lett. 98, 230501 (2007). doi:10.1103/PhysRevLett.98.230501

  13. R. Raussendorf, Phys. Rev. A 88, 022322 (2013). doi:10.1103/PhysRevA.88.022322

  14. M. Howard, J. Wallman, V. Veitch, J. Emerson, Nature (London) 510, 351 (2014). doi:10.1038/nature13460

    Google Scholar 

  15. I. Pitowsky, Quantum Probability - Quantum Logic, Lecture Notes in Physics (Springer, Berlin, 1989)

    MATH  Google Scholar 

  16. A.N. Kolmogorov, Foundations of the Theory of Probability (Chelsea Publishing Company, New York, 1950)

    MATH  Google Scholar 

  17. M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. I (Academic Press, New York, 1972)

    MATH  Google Scholar 

  18. L. de Broglie, An Introduction to the Study of Wave Mechanics (E. P. Dutton and Company Inc, New York, 1930)

    MATH  Google Scholar 

  19. D. Bohm, Phys. Rev. 85, 166,180 (1952). doi:10.1103/PhysRev.85.16610.1103/PhysRev.85.180

    Google Scholar 

  20. J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)

    MATH  Google Scholar 

  21. J.M. Jauch, C. Piron, Helv. Phys. Acta 36, 827 (1963)

    MathSciNet  Google Scholar 

  22. A.M. Gleason, J. Math. Mech. 6, 885 (1957)

    MathSciNet  Google Scholar 

  23. R.W. Spekkens (2013). arXiv:1312.3667

  24. T. Fritz, New J. Phys. 12, 083055 (2010). doi:10.1088/1367-2630/12/8/083055

    Google Scholar 

  25. C. Budroni, T. Moroder, M. Kleinmann, O. Gühne, Phys. Rev.Lett. 111, 020403 (2013). doi:10.1103/PhysRevLett.111.020403

  26. C. Budroni, C. Emary, Phys. Rev. Lett. 113, 050401 (2014). doi:10.1103/PhysRevLett.113.050401

  27. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969). doi:10.1103/PhysRevLett.23.880

    Google Scholar 

  28. S. Freedman, J. Clauser, Phys. Rev. Lett. 28, 938 (1972), doi:10.1103/PhysRevLett.28.938

    Google Scholar 

  29. E. Fry, R. Thompson, Phys. Rev. Lett. 37, 465 (1976). doi:10.1103/PhysRevLett.37.465

    Google Scholar 

  30. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 460 (1981). doi:10.1103/PhysRevLett.47.460

    Google Scholar 

  31. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982). doi:10.1103/PhysRevLett.49.91

    Google Scholar 

  32. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev.Lett. 49, 1804 (1982). doi:10.1103/PhysRevLett.49.1804

    Google Scholar 

  33. M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Nature (London) 409, 791 (2001). doi:10.1038/35057215

    Google Scholar 

  34. M. Giustina et al., Nature (London) 497, 227 (2014). doi:10.1038/nature12012

    Google Scholar 

  35. A.A. Klyachko, M.A. Can, S. Binicioğlu, A.S. Shumovsky, Phys. Rev. Lett. 101, 020403 (2008). doi:10.1103/PhysRevLett.101.020403

  36. G. Birkhoff, J. von Neumann, Ann. Math. 37, (1936)

    Google Scholar 

  37. C. Budroni, G. Morchio, J. Math. Phys. 51, 122205 (2010). doi:10.1063/1.3523478

    Google Scholar 

  38. S. Popescu, D. Rohrlich, Found. Phys. 24, 379 (1994). doi:10.1007/BF02058098

    Google Scholar 

  39. P. Kurzyński, R. Ramanathan, D. Kaszlikowski, Phys. Rev. Lett. 109, 020404 (2012). doi:10.1103/PhysRevLett.109.020404

  40. E.P. Specker, Dialectica 14, 239 (1960). doi:10.1111/dltc.1960.14.issue-2-3

  41. A. Cabello (2012). arXiv:1212.1756

  42. A. Cabello, Phys. Rev. Lett. 110, 060402 (2013). doi:10.1103/PhysRevLett.110.060402

  43. T. Fritz, A.B. Sainz, R. Augusiak, J. Bohr Brask, R. Chaves, A. Leverrier, A. Acín, Nat. Commun. 4, 2263 (2013). doi:10.1038/ncomms3263

  44. J. Henson (2012). arXiv:1210.5978

  45. A. Peres, J. Phys. A 24, 175 (1991). doi:10.1088/0305-4470/24/4/003

    Google Scholar 

  46. M. Kernaghan, J. Phys. A 27, 829 (1994). doi:10.1088/0305-4470/27/21/007

    Google Scholar 

  47. A. Cabello, J.M. Estebaranz, G. García-Alcaine, Phys. Lett. A 212, 183 (1996). doi:10.1016/0375-9601(96)00134-X

    Google Scholar 

  48. A. Peres, Phys. Lett. A 151, 107 (1990). doi:10.1016/0375-9601(90)90172-K

    Google Scholar 

  49. N.D. Mermin, Phys. Rev. Lett. 65, 3373 (1990). doi:10.1103/PhysRevLett.65.3373

    Google Scholar 

  50. S. Givant, P. Halmos, Introduction to Boolean Algebras (Springer, New York, 2009). doi:10.1103/PhysRevLett.101.210401

  51. A. Cabello, Phys. Rev. Lett. 101, 210401 (2008). doi:10.1103/PhysRevLett.101.210401

  52. P. Badziag, I. Bengtsson, A. Cabello, I. Pitowsky, Phys. Rev. Lett. 103 050401 (2009). doi:10.1103/PhysRevLett.103.050401

  53. G. Kirchmair, F. Zähringer, R. Gerritsma, M. Kleinmann, O. Gühne, A. Cabello, R. Blatt, C.F. Roos, Nature (London) 460, 494 (2009). doi:10.1038/nature08172

    Google Scholar 

  54. E. Amselem, M. Rådmark, M. Bourennane, A. Cabello, Phys. Rev. Lett. 103, 160405 (2009). doi:10.1103/PhysRevLett.103.160405

  55. O. Moussa, C.A. Ryan, D.G. Cory, R. Laflamme, Phys. Rev. Lett. 104, 160501 (2010). doi:10.1103/PhysRevLett.104.160501

  56. S. Yu, C.H. Oh, Phys. Rev. Lett. 108, 030402 (2012). doi:10.1103/PhysRevLett.108.030402

  57. G. Lüders, Ann. Phys. (Leipzig) 8, 322 (1951)

    Google Scholar 

  58. G. Lüders (English translation and discussion by K.A. Kirkpatrick), Ann. Phys. 15, 663 (2006). doi:10.1002/andp.200610207

    Google Scholar 

  59. A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, A.N. Korotkov, Nat. Phys. 6, 442 (2010). doi:10.1038/nphys1641

    Google Scholar 

  60. M.E. Goggin, M.P. Almeida, M. Barbieri, B.P. Lanyon, J.L. OBrien, A.G. White, G.J. Pryde, Proc. Natl. Acad. Sci. USA 108, 1256 (2011). doi:10.1073/pnas.1005774108

    Google Scholar 

  61. J.-S. Xu, C.-F. Li, X.-B. Zou, G.-C. Guo, Sci. Rep. 1, 101 (2011). doi:10.1038/srep00101

  62. J. Dressel, C.J. Broadbent, J.C. Howell, A.N. Jordan, Phys. Rev. Lett. 106, 040402 (2011). doi:10.1103/PhysRevLett.106.040402

  63. Y. Suzuki, M. Iinuma, H.F. Hofmann, New J. Phys. 14, 103022 (2012). doi:10.1088/1367-2630/14/10/103022

    Google Scholar 

  64. G. Waldherr, P. Neumann, S.F. Huelga, F. Jelezko, J. Wrachtrup, Phys. Rev. Lett. 107, 090401 (2011). doi:10.1103/PhysRevLett.107.090401

  65. R.E. George, L.M. Robledo, O.J.E. Maroney, M.S. Blok, H. Bernien, M.L. Markham, D.J. Twitchen, J.J.L. Morton, G.A.D. Briggs, R. Hanson, Proc. Natl. Acad. Sci. USA 110, 3777 (2013). doi:10.1073/pnas.1208374110

    Google Scholar 

  66. V. Athalye, S.S. Roy, T.S. Mahesh, Phys. Rev. Lett. 107, 130402 (2011). doi:10.1103/PhysRevLett.107.130402

  67. A.M. Souza, I.S. Oliveira, R.S. Sarthour, New J. Phys. 13, 053023 (2011). doi:10.1088/1367-2630/13/5/053023

    Google Scholar 

  68. M.M. Deza, M. Laurent, Geometry of Cuts and Metrics, vol. 15, Algorithms and Combinatorics (Springer, Berlin, 1997)

    MATH  Google Scholar 

  69. J.F. Clauser, M.A. Horne, Phys. Rev. D 10, 526 (1974). doi:10.1103/PhysRevD.10.526

    Google Scholar 

  70. cdd. http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html

  71. lrs. http://cgm.cs.mcgill.ca/~avis/C/lrs.html

  72. porta. http://www.zib.de/Optimization/Software/porta/

  73. I. Pitowsky, Math. Program. 50, 395 (1991). doi:10.1007/BF01594946

    Google Scholar 

  74. B.C. Cirel’son, Lett. Math. Phys. 4, 93 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  75. L.J. Landau, Phys. Lett. A 120, 54 (1987). doi:10.1016/0375-9601(87)90075-2

    Google Scholar 

  76. S. Wehner, Phys. Rev. A 73, 022110 (2006). doi:10.1103/PhysRevA.73.022110

  77. L. Vandenberghe, S. Boyd, SIAM Rev. 38, 49 (1996). doi:10.1137/1038003

    Google Scholar 

  78. D. Avis, H. Imai, T. Ito, J. Phys. A: Math. Gen. 39 11283 (2006). doi:10.1088/0305-4470/39/36/010

    Google Scholar 

  79. M. Navascués, S. Pironio, A. Acín, Phys. Rev. Lett. 98 (2007). doi:10.1103/PhysRevLett.98.010401

  80. M. Navascués, S. Pironio, A. Acín, New J. Phys. 1, 0 (2008). doi:10.1088/1367-2630/10/7/073013

    Google Scholar 

  81. A Cabello, S Severini, A Winter (2010). arXiv:1010.2163

  82. A Cabello, S Severini, A Winter, Phys. Rev. Lett. 112, 040401 (2014). doi:10.1103/PhysRevLett.112.040401

  83. L. Lovász, IEEE Trans. Inf. Theory 25, 1 (1979). doi:10.1109/TIT.1979.1055985

    Google Scholar 

  84. L. Lovász, Geometric Representations of Graphs (unpublished). www.cs.elte.hu/lovasz/geomrep.pdf

  85. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, 2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Budroni .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Budroni, C. (2016). Introduction. In: Temporal Quantum Correlations and Hidden Variable Models. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-24169-2_1

Download citation

Publish with us

Policies and ethics