Skip to main content

Reconfigurable LUT: A Double Edged Sword for Security-Critical Applications

  • Conference paper
  • First Online:
Security, Privacy, and Applied Cryptography Engineering (SPACE 2015)

Abstract

Modern FPGAs offer various new features for enhanced reconfigurability and better performance. One of such feature is a dynamically Reconfigurable LUT (RLUT) whose content can be updated internally, even during run-time. There are many scenarios like pattern matching where this feature has been shown to enhance the performance of the system. In this paper, we study RLUT in the context of secure applications. We describe the basic functionality of RLUT and discuss its potential applications for security. Next, we design several case-studies to exploit RLUT feature in security critical scenarios. The exploitation are studied from a perspective of a designer (e.g. designing countermeasures) as well as a hacker (inserting hardware Trojans).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trimberger, S.M., Moore, J.J.: FPGA Security: Motivations, Features, and Applications. Proceedings of the IEEE 102(8), 1248–1265 (2014)

    Article  Google Scholar 

  2. Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable devices. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 33–48. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Bhasin, S., He, W., Guilley, S., Danger, J.-L.: Exploiting FPGA block memories for protected cryptographic implementations. In: ReCoSoC, pp. 1–8. IEEE (2013)

    Google Scholar 

  4. Güneysu, T., Paar, C.: Ultra High Performance ECC over NIST Primes on Commercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 62–78. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Roy, D.B., Mukhopadhyay, D., Izumi, M., Takahashi, J.: Tile before multiplication: An efficient strategy to optimize DSP multiplier for accelerating prime field ECC for NIST curves. In: The 51st Annual Design Automation Conference, DAC 2014, San Francisco, CA, USA, June 1-5, pp. 1–6. ACM (2014)

    Google Scholar 

  6. Güneysu, T.: Getting Post-Quantum Crypto Algorithms Ready for Deployment. https://www.cosic.esat.kuleuven.be/ecrypt/cryptofor2020/program.shtml

  7. He, W., Otero, A., de la Torre, E., Riesgo, T.: Automatic generation of identical routing pairs for FPGA implemented DPL logic. In: ReConFig, pp. 1–6. IEEE (2012)

    Google Scholar 

  8. Kumm, M., Möller, K., Zipf, P.: Reconfigurable FIR filter using distributed arithmetic on FPGAs. In: 2013 IEEE International Symposium on Circuits and Systems (ISCAS 2013), Beijing, China, May 19-23, pp. 2058–2061. IEEE (2013)

    Google Scholar 

  9. Sasdrich, P., Moradi, A., Mischke, O., Güneysu, T.: Achieving Side-Channel Protection with Dynamic Logic Reconfiguration on Modern FPGAs. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA, May 5-7, pp. 130–136 (2015)

    Google Scholar 

  10. Madlener, F., Sotttinger, M., Huss, S.A.: Novel hardening techniques against differential power analysis for multiplication in gf(2n). In: International Conference on Field-Programmable Technology, FPT 2009, pp. 328–334 (December 2009)

    Google Scholar 

  11. Xilinx. Xilinx Partial Reconfiguration User Guide (UG702), http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/ug702.pdf

  12. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Ali, S., Chakraborty, R.S., Mukhopadhyay, D., Bhunia, S.: Multi-level attacks: An emerging security concern for cryptographic hardware. In: Design, Automation and Test in Europe, DATE 2011, Grenoble, France, March 14-18, pp. 1176–1179 (2011)

    Google Scholar 

  14. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: Threats and Emerging solutions. In: IEEE International High Level Design Validation and Test Workshop, HLDVT 2009, San Francisco, CA, USA, November 4-6, pp. 166–171 (2009)

    Google Scholar 

  15. Tehranipoor, M., Forte, D.: Tutorial T4: All You Need to Know about Hardware Trojans and Counterfeit ICs. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, Mumbai, India, January 5-9, pp. 9–10 (2014)

    Google Scholar 

  16. Chen, Z., Guo, X., Nagesh, R., Reddy, A., Gora, M., Maiti, A.: Hardware trojan designs on basys fpga board

    Google Scholar 

  17. Johnson, A.P., Saha, S., Chakraborty, R.S., Mukhopadhyay, D., Gören, S.: Fault Attack on AES via Hardware Trojan Insertion by Dynamic Partial Reconfiguration of FPGA over Ethernet. In: Proceedings of the 9th Workshop on Embedded Systems Security, WESS 2014, pp. 1:1–1:8. ACM, New York (2014)

    Google Scholar 

  18. Bhasin, S., Danger, J.-L., Guilley, S., Ngo, X.T., Sauvage, L.: Hardware Trojan Horses in Cryptographic IP Cores. In: Fischer, W., Schmidt, J.-M. (eds.) FDTC, pp. 15–29. IEEE (2013)

    Google Scholar 

  19. Note, J.-B., Rannaud, É.: From the Bitstream to the Netlist. In: Proceedings of the 16th International ACM/SIGDA Symposium on Field Programmable Gate Arrays, FPGA 2008, pp. 264–264. ACM, New York (2008)

    Google Scholar 

  20. Benchmarks. https://www.trust-hub.org/resources/benchmarks (accessed: January 30, 2015)

  21. Homma, N., Hayashi, Y.-i., Miura, N., Fujimoto, D., Tanaka, D., Nagata, M., Aoki, T.: EM Attack Is Non-invasive? - Design Methodology and Validity Verification of EM Attack Sensor. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 1–16. Springer, Heidelberg (2014)

    Google Scholar 

  22. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Ali, S., Mukhopadhyay, D., Tunstall, M.: Differential fault analysis of AES: towards reaching its limits. J. Cryptographic Engineering 3(2), 73–97 (2013)

    Article  Google Scholar 

  24. Poschmann, A., Ling, S., Wang, H.: 256 Bit Standardized Crypto for 650 GE – GOST Revisited. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 219–233. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Hajra, S., Rebeiro, C., Bhasin, S., Bajaj, G., Sharma, S., Guilley, S., Mukhopadhyay, D.: DRECON: DPA Resistant Encryption by Construction. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 420–439. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  26. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  27. Xilinx. Virtex-5 fpga system monitor, http://www-inst.eecs.berkeley.edu/~cs150/fa13/resources/ug192.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debapriya Basu Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Roy, D.B. et al. (2015). Reconfigurable LUT: A Double Edged Sword for Security-Critical Applications. In: Chakraborty, R., Schwabe, P., Solworth, J. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2015. Lecture Notes in Computer Science(), vol 9354. Springer, Cham. https://doi.org/10.1007/978-3-319-24126-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24126-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24125-8

  • Online ISBN: 978-3-319-24126-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics