Skip to main content

Simulations of Optical Emissions for Attacking AES and Masked AES

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9354))

Abstract

In this paper we present a novel attack based on photonic emission analysis targeting software implementations of AES. We focus on the particular case in which the attacker can collect the photonic emission of a limited number of sense amplifiers (e.g. only one) of the SRAM storing the S-Box. The attack consists in doing hypothesis on the secret key based on the knowledge of the partial output of the SubBytes operation. We also consider the possibility to attack a masked implementation of AES using the photonic emission analysis. In the case of masking, the attacker needs 2 leakages of the same encryption to overcome the randomization of the masks. For our analysis, we assume the same physical setup described in other previous works. Reported results are based on simulations with some hypothesis on the probability of photonic emission of a single transistor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daemen, J., Rijmen, V.: The design of Rijndael: AES - the Advanced Encryption Standard. Springer Verlag (2002)

    Google Scholar 

  2. Di-Battista, J., Courrege, J.C., Rouzeyre, B., Torres, L., Perdu, P.: When Failure Analysis Meets Side-Channel Attacks. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 188–202. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Ferrigno, J., Hlavàĉ, M.: When AES blinks: introducing optical side channel. Information Security, IET 2(3), 94–98 (2008)

    Google Scholar 

  4. Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resistant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analysis. Journal of Cryptographic Engineering 1(1), 5–27 (2011)

    Article  Google Scholar 

  6. Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., Seifert, J.-P.: Simple Photonic Emission Analysis of AES. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 41–57. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Schlösser, A., Nedospasov, D., Krämer, J., Orlic, S., Seifert, J.-P.: Differential Photonic Emission Analysis. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 1–16. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Sedra, A.S., Smith, K.C.: Microelectronic Circuits, vol. 6. Oxford University Press (2009)

    Google Scholar 

  9. Skorobogatov, S.P.: Using Optical Emission Analysis for Estimating Contribution to Power Analysis. In: 6th Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 111–119. IEEE Computer Society (2009)

    Google Scholar 

  10. Stellari, F., Zappa, F., Cova, S., Vendrame, L.: Tools for non-invasive optical characterization of CMOS circuits. In: Electron Devices Meeting, IEDM 1999. Technical Digest. International, pp. 487–490 (December 1999)

    Google Scholar 

  11. Stellari, F., Zappa, F., Ghioni, M., Cova, S.: Non-Invasive Optical Characterisation Technique for Fast Switching CMOS Circuits. In: Proceeding of the 29th European Solid-State Device Research Conference, vol. 1, pp. 172–175 (September 1999)

    Google Scholar 

  12. Tosi, A., Stellari, F., Zappa, F., Cova, S.: Hot-carrier luminescence: comparison of different CMOS technologies. In: 33rd Conference on European Solid-State Device Research, ESSDERC 2003, pp. 351–354 (September 2003)

    Google Scholar 

  13. Tsang, J., Fischetti, M.: Why hot carrier emission based timing probes will work for 50 nm, 1V CMOS technologies. Microelectronics Reliability 41(9-10), 1465–1470 (2001)

    Article  Google Scholar 

  14. Villa, S., Lacaita, A.L., Pacelli, A.: Photon emission from hot electrons in silicon. Phys. Rev. B 52, 10 993–10 999 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido M. Bertoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bertoni, G.M., Grassi, L., Melzani, F. (2015). Simulations of Optical Emissions for Attacking AES and Masked AES. In: Chakraborty, R., Schwabe, P., Solworth, J. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2015. Lecture Notes in Computer Science(), vol 9354. Springer, Cham. https://doi.org/10.1007/978-3-319-24126-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24126-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24125-8

  • Online ISBN: 978-3-319-24126-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics