Key Issues in the Use of NDVI for Land Degradation Assessment

  • Genesis T. Yengoh
  • David Dent
  • Lennart Olsson
  • Anna E. Tengberg
  • Compton J. TuckerIII
Part of the SpringerBriefs in Environmental Science book series (BRIEFSENVIRONMENTAL)


A substantial body of research has established the correlation between NDVI and aboveground biomass, and knowledge of the theoretical basis for using satellite-derived NDVI as a general proxy for vegetation conditions has advanced (Mbow et al. 2014; Pettorelli et al. 2005; Sellers et al. 1994). Reduction of primary productivity is a reliable indicator of the decrease or destruction of the biological productivity, particularly in drylands (Wessels et al. 2004; Li et al. 2004). NPP expressed in g of C m−2 years−1 and quantifies net carbon fixed by vegetation. According to Cao et al. (2003), NPP is “the beginning of the carbon biogeochemical cycle,” defined mathematically as in Eq. (5.1):
$$ \mathrm{N}\mathrm{P}\mathrm{P}=f\left(\mathrm{NDVI,,,,PAR,,,,fPAR,,,,aPAR,,,,LAI}\right) $$
where fPAR is the fraction of absorbed photosynthetic active radiation, aPAR is the absorbed photosynthetic active radiation, and LAI is the leaf area index. Changes in NPP or, rather, its proxy NDVI induced by land degradation can be measured using a range of remote sensing techniques so remote sensing has become an essential tool for global, regional, and national studies of land degradation (Anyamba and Tucker 2012; Bai et al. 2008; Bajocco et al. 2012; de Jong et al. 2011b; Field et al. 1995; Horion et al. 2014; Le et al. 2014; Prince and Goward 1995). Many approaches have been developed to estimate NPP, notably the Global Production Efficiency Model (GLO‐PEM) (Prince and Goward 1995), the Light-Use Efficiency (LUE) Model (Monteith and Moss 1977), the Production Efficiency Approach (Goetz et al. 1999; Goward and Huemmrich 1992), and the Sim‐CYCLE (Ito and Oikawa 2002). And models have been developed to estimate NPP directly from remotely sensed NDVI at a global scale. Running et al. (2004) offered Eq. (5.2):
$$ \mathrm{N}\mathrm{P}\mathrm{P}=\varSigma \left(\varepsilon \times \mathrm{N}\mathrm{DVI}\times \mathrm{P}\mathrm{A}\mathrm{R}-{\mathrm{R}}_{lr}\right)-{\mathrm{R}}_g-{\mathrm{R}}_m $$
where ε is the conversion efficiency; PAR is photosynthetically active radiation; R lr is 24-h maintenance respiration of leaves and fine roots; R g is annual growth respiration required to construct leaves, fine roots, and new woody tissues; and R m is the maintenance respiration of live cells in woody tissues. Drawing on this relationship, Bai et al. (2008) adopted an empirical relationship to translate NDVI trends to NPP trends for their proxy global assessment of land degradation (Eq. 5.3):
$$ {\mathrm{NPP}}_{\mathrm{MOD}17}\left( kg\kern0.24em C\kern0.24em h{a}^{-1}{\mathrm{year}}^{-1}\right)=1106.37\times \varSigma \mathrm{NDVI}-564.55 $$
where NPPMOD17 is the annual mean NPP derived from MODIS MOD17 Collection four data and sum NDVI is the 4-year (2000–2003) mean annual sum NDVI derived from GIMMS.


Fine Root Photosynthetic Active Radiation Land Degradation Geographically Weighted Regression Woody Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albergel J (1988) Genèse et prédétermination des crues au Burkina Faso: du m2 au km2: étude des paramètres hydrologiques et de leur évolution. Ph.D. Thesis. Editions de l’Orstom, 1988, 330p, Université Paris 6Google Scholar
  2. Anyamba A, Tucker CJ (2012) Historical perspective of AVHRR NDVI and vegetation drought monitoring. Remote Sens Drought: Innovative Monit Approaches 23Google Scholar
  3. Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24(3):223–234CrossRefGoogle Scholar
  4. Bajocco S, De Angelis A, Perini L, Ferrara A, Salvati L (2012) The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study. Environ Manage 49(5):980–989CrossRefGoogle Scholar
  5. Bradley BA, Mustard JF (2008) Comparison of phenology trends by land cover class: a case study in the Great Basin, USA. Glob Chang Biol 14(2):334–346CrossRefGoogle Scholar
  6. Cao M, Prince SD, Li K, Tao B, Small J, Shao X (2003) Response of terrestrial carbon uptake to climate interannual variability in China. Glob Chang Biol 9(4):536–546CrossRefGoogle Scholar
  7. Dardel C, Kergoat L, Hiernaux P, Grippa M, Mougin E, Ciais P, Nguyen C-C (2014) Rain-use-efficiency: what it tells us about the conflicting Sahel greening and Sahelian Paradox. Remote Sens 6(4):3446–3474CrossRefGoogle Scholar
  8. De Beurs K, Henebry G (2005) A statistical framework for the analysis of long image time series. Int J Remote Sens 26(8):1551–1573CrossRefGoogle Scholar
  9. de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011a) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115(2):692–702. doi:
  10. de Jong R, de Bruin S, Schaepman M, Dent D (2011b) Quantitative mapping of global land degradation using Earth observations. Int J Remote Sens 32(21):6823–6853CrossRefGoogle Scholar
  11. de Jong R, Verbesselt J, Schaepman ME, De Bruin S (2011c) Detection of breakpoints in global NDVI time series. In: 34th International Symposium on Remote Sensing of Environment (ISRSE), pp 10–15Google Scholar
  12. Diouf A, Lambin E (2001) Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal. J Arid Environ 48(2):129–148CrossRefGoogle Scholar
  13. Erian WF (2005) Arab network of the remote sensing centers for desertification monitoring and assessment. In: Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, pp 452–459Google Scholar
  14. Evans J, Geerken R (2004) Discrimination between climate and human-induced dryland degradation. J Arid Environ 57(4):535–554CrossRefGoogle Scholar
  15. Fensholt R, Rasmussen K (2011) Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens Environ 115(2):438–451CrossRefGoogle Scholar
  16. Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158. doi: 10.1016/j.rse.2012.01.017 CrossRefGoogle Scholar
  17. Fensholt R, Rasmussen K, Kaspersen P, Huber S, Horion S, Swinnen E (2013) Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens 5(2):664–686CrossRefGoogle Scholar
  18. Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51(1):74–88CrossRefGoogle Scholar
  19. Goetz SJ, Prince SD, Goward SN, Thawley MM, Small J (1999) Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecol Model 122(3):239–255CrossRefGoogle Scholar
  20. Goward SN, Huemmrich KF (1992) Vegetation canopy PAR absorptance and the normalized difference vegetation index: an assessment using the SAIL model. Remote Sens Environ 39(2):119–140CrossRefGoogle Scholar
  21. Higginbottom TP, Symeonakis E (2014) Assessing land degradation and desertification using vegetation index data: current frameworks and future directions. Remote Sens 6(10):9552–9575CrossRefGoogle Scholar
  22. Horion S, Fensholt R, Tagesson T, Ehammer A (2014) Using earth observation-based dry season NDVI trends for assessment of changes in tree cover in the Sahel. Int J Remote Sens 35(7):2493–2515CrossRefGoogle Scholar
  23. Ito A, Oikawa T (2002) A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol Model 151(2):143–176CrossRefGoogle Scholar
  24. Jong, R., et al. 2012. Trend changes in global greening and browning: contribution of short‐term trends to longerterm change. Global Change Biology, 18(2), 642-655Google Scholar
  25. Haywood, J. and Randall, J. (2008). Trending seasonal data with multiple structural breaks. NZ visitor arrivals and the minimal effects of 9/11. Research report 08/10. Victoria, New Zealand, University of Wellington. Vol. p.p. 26Google Scholar
  26. Landmann T, Dubovyk O (2014) Spatial analysis of human-induced vegetation productivity decline over eastern Africa using a decade (2001–2011) of medium resolution MODIS time-series data. Int J Appl Earth Obs Geoinf 33:76–82CrossRefGoogle Scholar
  27. Le Houerou HN (1984) Rain use efficiency: a unifying concept in arid-land ecology. J Arid Environ 7(3):213–247Google Scholar
  28. Le QB, Nkonya E, Mirzabaev A (2014) Biomass productivity-based mapping of global land degradation hotspots. ZEF-Discussion Papers on Development Policy (193)Google Scholar
  29. Li J, Lewis J, Rowland J, Tappan G, Tieszen L (2004) Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series. J Arid Environ 59(3):463–480CrossRefGoogle Scholar
  30. Mbow C, Fensholt R, Nielsen TT, Rasmussen K (2014) Advances in monitoring vegetation and land use dynamics in the Sahel. Geografisk Tidsskrift-Danish J Geogr 114(1):84–91CrossRefGoogle Scholar
  31. Monteith J, Moss C (1977) Climate and the efficiency of crop production in Britain [and discussion]. Philos Trans Royal Soc London B, Biol Sci 281(980):277–294CrossRefGoogle Scholar
  32. Nkonya E, Gerber N, Baumgartner P, Von Braun J, De Pinto A, Graw V, Kato E, Kloos J, Walter T (2011) The economics of desertification, land degradation, and drought: toward an integrated global assessment. ZEF Discussion Papers on Development PolicyGoogle Scholar
  33. Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510CrossRefGoogle Scholar
  34. Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J Biogeogr 22:815–835CrossRefGoogle Scholar
  35. Prince SD, Colstoun D, Brown E, Kravitz L (1998) Evidence from rain‐use efficiencies does not indicate extensive Sahelian desertification. Glob Chang Biol 4(4):359–374CrossRefGoogle Scholar
  36. Propastin P, Kappas M, Muratova N (2008) Application of geographically weighted regression analysis to assess human-induced land degradation in a dry region of Kazakhstan. In: shaping the change, XXIII FIG congressGoogle Scholar
  37. Purkis SJ, Klemas VV (2011) Remote sensing and global environmental change. Wiley, OxfordCrossRefGoogle Scholar
  38. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547–560CrossRefGoogle Scholar
  39. Safriel UN (2007) The assessment of global trends in land degradation. In: Sivakumar MK, Ndiang’ui N (eds) Climate and land degradation, Environmental science and engineering: environmental science. Springer, Berlin, pp 1–38CrossRefGoogle Scholar
  40. Sellers P, Tucker C, Collatz G, Los S, Justice C, Dazlich D, Randall D (1994) A global 1 by 1 NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI. Int J Remote Sens 15(17):3519–3545CrossRefGoogle Scholar
  41. Symeonakis E, Drake N (2004) Monitoring desertification and land degradation over sub-Saharan Africa. Int J Remote Sens 25(3):573–592CrossRefGoogle Scholar
  42. Udelhoven, T.; Stellmes, M. Changes in land surface conditions on the Iberian Peninsula (1989 to 2004) detected by means of time series analysis from hypertemporal remote sensing data, Proceedings of MultiTemp 2007 International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, MultiTemp, Leuven, Belgium; 2007; pp. 1–6Google Scholar
  43. Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010a) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114(1):106–115CrossRefGoogle Scholar
  44. Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010b) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens Environ 114(12):2970–2980CrossRefGoogle Scholar
  45. Vogt JV, Safriel U, Von Maltitz G, Sokona Y, Zougmore R, Bastin G, Hill J (2011) Monitoring and assessment of land degradation and desertification: towards new conceptual and integrated approaches. Land Degrad Dev 22(2):150–165. doi: 10.1002/ldr.1075 CrossRefGoogle Scholar
  46. Wessels K (2009) Letter to the editor: comments on ‘Proxy global assessment of land degradation’ by Bai et al. (2008). Soil Use Manag 25:91–92CrossRefGoogle Scholar
  47. Wessels, K., Van Den Bergh, F. and Scholes, R. 2012. Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sensing of Environment, 125, 10-22Google Scholar
  48. Wessels KJ, Prince SD, Frost PE, van Zyl D (2004) Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens Environ 91(1):47–67. doi:
  49. Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68(2):271–297CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Genesis T. Yengoh
    • 1
  • David Dent
    • 2
  • Lennart Olsson
    • 1
  • Anna E. Tengberg
    • 1
  • Compton J. TuckerIII
    • 3
  1. 1.Lund University Centre for Sustainability Studies - LUCSUSLundSweden
  2. 2.Chestnut Tree Farm, Forncett EndNorthfolkUK
  3. 3.Department of Hydrospheric and Biospheric SciencesNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations