Limits to the Use of NDVI in Land Degradation Assessment

  • Genesis T. Yengoh
  • David Dent
  • Lennart Olsson
  • Anna E. Tengberg
  • Compton J. TuckerIII
Part of the SpringerBriefs in Environmental Science book series (BRIEFSENVIRONMENTAL)


During the past half century, NDVI has been widely used for vegetation mapping and monitoring as well as in the assessment of land-cover and associated changes. This is because remotely sensed satellite-derived datasets provide spatially continuous data (data that are not sampled at individual points) and yield time-series signatures from which temporal patterns, trends, variations, and relationships may be derived (Jacquin et al. 2010). This has not prevented the misuse of NDVI—care is needed in the use of any scientific methodology.


Land Degradation NDVI Data Maximum Value Composite Vegetation Index Data NDVI Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achard F, DeFries R, Eva H, Hansen M, Mayaux P, Stibig H (2007) Pan-tropical monitoring of deforestation. Environ Res Lett 2(4):045022CrossRefGoogle Scholar
  2. Anyamba A, Tucker CJ (2012) Historical perspective of AVHRR NDVI and vegetation drought monitoring. Remote Sens Drought: Innovative Monit Approaches 23Google Scholar
  3. Bai Z, Dent D, Wu Y, de Jong R (2013) Land degradation and ecosystem services. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J (eds) Ecosystem services and carbon sequestration in the biosphere. Springer, Dordrecht, pp 357–381CrossRefGoogle Scholar
  4. Bandyopadhyay N, Saha AK (2014) Analysing meteorological and vegetative drought in Gujarat. In: Singh M, Singh RB, Hassan I (eds) Climate change and biodiversity: proceedings of IGU Rohtak conference, vol 1. Springer, Japan, pp 61–71CrossRefGoogle Scholar
  5. Bradley BA, Mustard JF (2008) Comparison of phenology trends by land cover class: a case study in the Great Basin, USA. Glob Chang Biol 14(2):334–346CrossRefGoogle Scholar
  6. Conijn J, Bai Z, Bindraban P, Rutgers B (2013) Global changes of net primary productivity, affected by climate and abrupt land use changes since 1981. Towards mapping global soil degradation. Report 2013/01, ISRIC–World Soil Information, Wageningen. ISRIC Report 1Google Scholar
  7. Cook BI, Pau S (2013) A global assessment of long-term greening and browning trends in pasture lands using the GIMMS LAI3g dataset. Remote Sens 5(5):2492–2512CrossRefGoogle Scholar
  8. de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011a) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115(2):692–702. doi:
  9. Farifteh J, Farshad A, George R (2006) Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 130(3):191–206CrossRefGoogle Scholar
  10. Field CB, Randerson JT, Malmström CM (1995) Global net primary production: combining ecology and remote sensing. Remote Sens Environ 51(1):74–88CrossRefGoogle Scholar
  11. Haboudane D, Miller JR, Pattey E, Zarco-Tejada PJ, Strachan IB (2004) Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens Environ 90(3):337–352CrossRefGoogle Scholar
  12. Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7(11):1417–1434CrossRefGoogle Scholar
  13. Jacquin A, Sheeren D, Lacombe J-P (2010) Vegetation cover degradation assessment in Madagascar savanna based on trend analysis of MODIS NDVI time series. Int J Appl Earth Obs Geoinf 12:S3–S10CrossRefGoogle Scholar
  14. Karnieli A, Agam N, Pinker RT, Anderson M, Imhoff ML, Gutman GG, Panov N, Goldberg A (2010) Use of NDVI and land surface temperature for drought assessment: merits and limitations. J Climate 23(3):618–633CrossRefGoogle Scholar
  15. Krupenikov IA, Dent D, Boincean BP (2011) The black earth: ecological principles for sustainable agriculture on chernozem soils, vol 10. Springer, DordrechtGoogle Scholar
  16. Lambin EF, Ehrlich D (1997) Land-cover changes in sub-Saharan Africa (1982–1991): application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens Environ 61(2):181–200CrossRefGoogle Scholar
  17. Liu W, Juárez RN (2001) ENSO drought onset prediction in northeast Brazil using NDVI. Int J Remote Sens 22(17):3483–3501CrossRefGoogle Scholar
  18. Metternicht G, Zinck J (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85(1):1–20CrossRefGoogle Scholar
  19. Myneni RB, Hall FG, Sellers PJ, Marshak AL (1995) The interpretation of spectral vegetation indexes. IEEE Trans Geosci Remote Sens 33(2):481–486CrossRefGoogle Scholar
  20. Myneni R. B. et al. (2014) Attribution of global vegetation photosynthetic capacity from 1982 to 2014. Global Change Biology (in review)Google Scholar
  21. Olsson L, Eklundh L, Ardö J (2005) A recent greening of the Sahel—trends, patterns and potential causes. J Arid Environ 63(3):556–566CrossRefGoogle Scholar
  22. Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510CrossRefGoogle Scholar
  23. Pettorelli N, Safi K, Turner W (2014) Satellite remote sensing, biodiversity research and conservation of the future. Philos Trans R Soc, B 369(1643):20130190CrossRefGoogle Scholar
  24. Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J Biogeogr 22:815–835CrossRefGoogle Scholar
  25. Rouse J Jr, Haas R, Schell J, Deering D (1974) Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec Publ 351:309Google Scholar
  26. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547–560CrossRefGoogle Scholar
  27. Schlerf M, Atzberger C, Hill J (2005) Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens Environ 95(2):177–194CrossRefGoogle Scholar
  28. Sternberg T, Tsolmon R, Middleton N, Thomas D (2011) Tracking desertification on the Mongolian steppe through NDVI and field-survey data. Int J Digital Earth 4(1):50–64CrossRefGoogle Scholar
  29. Symeonakis E, Drake N (2004) Monitoring desertification and land degradation over sub-Saharan Africa. Int J Remote Sens 25(3):573–592CrossRefGoogle Scholar
  30. Tucker CJ, Nicholson SE (1999) Variations in the size of the Sahara Desert from 1980 to 1997. Ambio 28:587–591Google Scholar
  31. Tucker CJ, Pinzon JE, Brown ME, Slayback DA, Pak EW, Mahoney R, Vermote EF, El Saleous N (2005) An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens 26(20):4485–4498CrossRefGoogle Scholar
  32. Wessels KJ, Prince SD, Frost PE, van Zyl D (2004) Assessing the effects of human-induced land degradation in the former homelands of northern South Africa with a 1 km AVHRR NDVI time-series. Remote Sens Environ 91(1):47–67. doi:
  33. Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68(2):271–297CrossRefGoogle Scholar
  34. Zhang Y, Peng C, Li W, Fang X, Zhang T, Zhu Q, Chen H, Zhao P (2013) Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: recent progress and future challenges. Environ Rev 21(2):103–115. doi: 10.1139/er-2013-0006 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Genesis T. Yengoh
    • 1
  • David Dent
    • 2
  • Lennart Olsson
    • 1
  • Anna E. Tengberg
    • 1
  • Compton J. TuckerIII
    • 3
  1. 1.Lund University Centre for Sustainability Studies - LUCSUSLundSweden
  2. 2.Chestnut Tree Farm, Forncett EndNorthfolkUK
  3. 3.Department of Hydrospheric and Biospheric SciencesNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations