Skip to main content

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

In the late 1960s, several researchers began using red and near-infrared reflected light to study vegetation (Pearson and Miller 1972). In the late 1960s, ratios of red and near-infrared light were used to assess turf grass condition and tropical rain forest leaf area index (Birth and McVey 1968; Jordan 1969). Compton Tucker was the first to use it for determining total dry matter accumulation, first from hand-held instruments (Tucker 1979), and then from NOAA AVHRR satellite data (Tucker et al. 1981, 1985), demonstrating that the growing season integral of frequent NDVI measurements represented the summation of photosynthetic potential as total dry matter accumulation. Starting in July 1981, a continuous time series of global NDVI data at a spatial resolution of 8 km has been available from the AVHRR instrument mounted on NOAA weather satellites. Soon, researchers realized the value of NDVI time-series remote sensing (Goward et al. 1985; Justice et al. 1985; Townshend et al. 1985; Tucker et al. 1985). This early work was the spur for development of the higher-resolution Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument. The application of satellite NDVI data has blossomed into many fields of natural resources investigation (see Annex 1). One particular appeal of remote sensing in the study of large geographic areas, or at multiple times over the year(s), is the potential for cost savings (Pettorelli 2013). We examine the use of NDVI in research on land-use and land-cover change, drought, desertification, soil erosion, vegetation fires, biodiversity monitoring and conservation, and soil organic carbon (SOC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai L, Fang N, Zhang B, Shi Z (2013) Broad area mapping of monthly soil erosion risk using fuzzy decision tree approach: integration of multi-source data within GIS. Int J Geogr Inf Sci 27(6):1251–1267

    Article  Google Scholar 

  • Anyamba A, Tucker C (2005) Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J Arid Environ 63(3):596–614

    Article  Google Scholar 

  • Anyamba A, Tucker CJ (2012) Historical perspective of AVHRR NDVI and vegetation drought monitoring. Remote Sens Drought: Innovative Monit Approaches 23

    Google Scholar 

  • Bajocco S, De Angelis A, Perini L, Ferrara A, Salvati L (2012) The impact of land use/land cover changes on land degradation dynamics: a Mediterranean case study. Environ Manage 49(5):980–989

    Article  Google Scholar 

  • Bernoux M, Chevallier T (2014) Carbon in dryland soils—Multiple essential functions, 10th edn, Les dossiers thématiques du CSFD. CSFD/Agropolis International, Montpellier, p 40 pp

    Google Scholar 

  • Birth GS, McVey GR (1968) Measuring the color of growing turf with a reflectance spectrophotometer. Agron J 60(6):640–643

    Article  Google Scholar 

  • Brandt M, Mbow C, Diouf AA, Verger A, Samimi C, Fensholt R (2014) Ground and satellite based evidence of the biophysical mechanisms behind the greening Sahel. Global change biology 21(4):1610–1620

    Article  Google Scholar 

  • Chen D, Huang J, Jackson TJ (2005) Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens Environ 98(2–3):225–236

    Article  Google Scholar 

  • Chen T, Niu RQ, Li PX, Zhang LP, Du B (2011) Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun Watershed, North China. Environ Earth Sci 63(3):533–541

    Article  Google Scholar 

  • Chuvieco E, Cocero D, Riano D, Martin P, Martınez-Vega J, de la Riva J, Pérez F (2004) Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens Environ 92(3):322–331

    Article  Google Scholar 

  • Cui X, Gibbes C, Southworth J, Waylen P (2013) Using remote sensing to quantify vegetation change and ecological resilience in a semi-arid system. Land 2(2):108–130

    Article  Google Scholar 

  • Dardel C, Kergoat L, Hiernaux P, Mougin E, Grippa M, Auda Y, Tucker CJ (2013) 30 years of remote sensing imagery in Sahel confronted to field observations (Gourma, Mali). In: EGU General Assembly Conference Abstracts, p 12872

    Google Scholar 

  • De Angelis A, Bajocco S, Ricotta C (2012) Modelling the phenological niche of large fires with remotely sensed NDVI profiles. Ecol Model 228:106–111

    Article  Google Scholar 

  • DeFries R, Townshend J (1994) NDVI-derived land cover classifications at a global scale. Int J Remote Sens 15(17):3567–3586

    Article  Google Scholar 

  • Delbart N, Kergoat L, Le Toan T, Lhermitte J, Picard G (2005) Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens Environ 97(1):26–38

    Article  Google Scholar 

  • Dent D (2007) Environmental geophysics mapping salinity and water resources. Int J Appl Earth Obs Geoinf 9(2):130–136

    Article  Google Scholar 

  • Despland E, Rosenberg J, Simpson SJ (2004) Landscape structure and locust swarming: a satellite’s eye view. Ecography 27(3):381–391

    Article  Google Scholar 

  • Di Gregorio A (2005) Land cover classification system: classification concepts and user manual: LCCS, vol 8, 8th edn, FAO environment and natural resources service series. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Díaz-Delgado R, Lloret F, Pons X, Terradas J (2002) Satellite evidence of decreasing resilience in Mediterranean plant communities after recurrent wildfires. Ecology 83(8):2293–2303

    Article  Google Scholar 

  • Díaz-Delgado R, Lloret F, Pons X (2003) Influence of fire severity on plant regeneration by means of remote sensing imagery. Int J Remote Sens 24(8):1751–1763

    Article  Google Scholar 

  • Diouf A, Lambin E (2001) Monitoring land-cover changes in semi-arid regions: remote sensing data and field observations in the Ferlo, Senegal. J Arid Environ 48(2):129–148

    Article  Google Scholar 

  • Duro DC, Coops NC, Wulder MA, Han T (2007) Development of a large area biodiversity monitoring system driven by remote sensing. Prog Phys Geogr 31(3):235–260

    Article  Google Scholar 

  • Eldeiry A, Garcia L (2010) Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using LANDSAT images. J Irrig Drain Eng 136(6):355–364. doi:10.1061/(ASCE)IR.1943-4774.0000208

    Article  Google Scholar 

  • Erian WF (2005) Arab network of the remote sensing centers for desertification monitoring and assessment. In: Remote sensing and geoinformation processing in the assessment and monitoring of land degradation and desertification, Trier, Germany, pp 452–459

    Google Scholar 

  • Farifteh J, Farshad A, George R (2006) Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 130(3):191–206

    Article  Google Scholar 

  • Fensholt R, Langanke T, Rasmussen K, Reenberg A, Prince SD, Tucker C, Scholes RJ, Le QB, Bondeau A, Eastman R, Epstein H, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158. doi:10.1016/j.rse.2012.01.017

    Article  Google Scholar 

  • Fensholt R, Rasmussen K, Kaspersen P, Huber S, Horion S, Swinnen E (2013) Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens 5(2):664–686

    Article  Google Scholar 

  • Foth HD (1991) Fundamentals of soil science, vol Ed. 8. Wiley, New York

    Google Scholar 

  • Friedl MA, McIver DK, Hodges JC, Zhang X, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83(1):287–302

    Article  Google Scholar 

  • Fu B, Liu Y, Lü Y, He C, Zeng Y, Wu B (2011) Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol Complex 8(4):284–293

    Article  Google Scholar 

  • Gao B-C (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266

    Article  Google Scholar 

  • Gibbes C, Southworth J, Waylen P, Child B (2014) Climate variability as a dominant driver of post-disturbance savanna dynamics. Appl Geogr 53:389–401

    Article  Google Scholar 

  • Goward SN, Tucker CJ, Dye DG (1985) North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64(1):3–14

    Article  Google Scholar 

  • Grainger A (2013) The threatening desert: controlling desertification. Routledge, London

    Google Scholar 

  • Hansen M, DeFries R, Townshend JR, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21(6–7):1331–1364

    Article  Google Scholar 

  • Henricksen B, Durkin J (1986) Growing period and drought early warning in Africa using satellite data. Int J Remote Sens 7(11):1583–1608

    Article  Google Scholar 

  • Herrmann SM, Sop T (2015) The map is not the territory. How satellite remote sensing and ground evidence have (Re-)Shaped the image of Sahelian desertification. In: Behnke R, Mortimore M (eds) Desertification: science, politics and public perception. Springer (Earth System Science Series), New York

    Google Scholar 

  • Herrmann SM, Tappan GG (2013) Vegetation impoverishment despite greening: a case study from central Senegal. J Arid Environ 90:55–66

    Article  Google Scholar 

  • Herrmann SM, Anyamba A, Tucker CJ (2005) Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob Environ Chang 15(4):394–404

    Article  Google Scholar 

  • Hickler T, Eklundh L, Seaquist JW, Smith B, Ardö J, Olsson L, Sykes MT, Sjöström M (2005) Precipitation controls Sahel greening trend. Geophys Res Lett 32(21)

    Google Scholar 

  • Horion S, Fensholt R, Tagesson T, Ehammer A (2014) Using earth observation-based dry season NDVI trends for assessment of changes in tree cover in the Sahel. Int J Remote Sens 35(7):2493–2515

    Article  Google Scholar 

  • Hutchinson C (1991) Uses of satellite data for famine early warning in sub-Saharan Africa. Int J Remote Sens 12(6):1405–1421

    Article  Google Scholar 

  • Isaev A, Korovin G, Bartalev S, Ershov D, Janetos A, Kasischke E, Shugart H, French N, Orlick B, Murphy T (2002) Using remote sensing to assess Russian forest fire carbon emissions. Clim Change 55(1–2):235–249

    Article  Google Scholar 

  • Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt E (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92(4):475–482

    Article  Google Scholar 

  • Jensen J (2007) Remote sensing of the environment. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Jordan CF (1969) Derivation of leaf-area index from quality of light on the forest floor. Ecology 50:663–666

    Article  Google Scholar 

  • Justice CO, Townshend J, Holben B, Tucker CJ (1985) Analysis of the phenology of global vegetation using meteorological satellite data. Int J Remote Sens 6(8):1271–1318

    Article  Google Scholar 

  • Karnieli A, Dall’Olmo G (2003) Remote-sensing monitoring of desertification, phenology, and droughts. Manag Environ Qual 14(1):22–38

    Article  Google Scholar 

  • Khorram S, Koch FH, van der Wiele CF, Nelson SA (2012) Remote sensing. Springer, New York

    Book  Google Scholar 

  • Lambin EF, Ehrlich D (1997) Land-cover changes in sub-Saharan Africa (1982–1991): application of a change index based on remotely sensed surface temperature and vegetation indices at a continental scale. Remote Sens Environ 61(2):181–200

    Article  Google Scholar 

  • Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28(1):205–241

    Article  Google Scholar 

  • Lanorte, A., et al. 2014. Fisher–Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance. International Journal of Applied Earth Observation and Geoinformation, 26, 441-446

    Google Scholar 

  • Leon JRR, van Leeuwen WJ, Casady GM (2012) Using MODIS-NDVI for the modeling of post-wildfire vegetation response as a function of environmental conditions and pre-fire restoration treatments. Remote Sens 4(3):598–621

    Article  Google Scholar 

  • Liu W, Juárez RN (2001) ENSO drought onset prediction in northeast Brazil using NDVI. Int J Remote Sens 22(17):3483–3501

    Article  Google Scholar 

  • Lobell D, Lesch S, Corwin D, Ulmer M, Anderson K, Potts D, Doolittle J, Matos M, Baltes M (2010) Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. J Environ Qual 39(1):35–41

    Article  Google Scholar 

  • Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD (2006) Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105(2):142–154

    Article  Google Scholar 

  • Malak DA, Pausas JG (2006) Fire regime and post-fire Normalized Difference Vegetation Index changes in the eastern Iberian peninsula (Mediterranean basin). Int J Wildland Fire 15(3):407–413

    Article  Google Scholar 

  • Mas J-F (1999) Monitoring land-cover changes: a comparison of change detection techniques. Int J Remote Sens 20(1):139–152

    Article  Google Scholar 

  • Mayaux P, Eva H, Brink A, Achard F, Belward A (2008) Remote sensing of land-cover and land-use dynamics. In: Chuvieco E (ed) Earth observation of global change. Springer, New York, pp 85–108

    Chapter  Google Scholar 

  • Metternicht G, Zinck J (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85(1):1–20

    Article  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216. doi:http://dx.doi.org/10.1016/j.jhydrol.2010.07.012

  • Mishra U, Lal R, Liu D, Van Meirvenne M (2010) Predicting the spatial variation of the soil organic carbon pool at a regional scale. Soil Sci Soc Am J 74(3):906–914

    Article  Google Scholar 

  • Mitchell JE, Roundtable SR (2010) Criteria and indicators of sustainable rangeland management. University of Wyoming/Cooperative Extension Service, Laramie

    Google Scholar 

  • Mulianga B, Bégué A, Simoes M, Clouvel P, Todoroff P (2013) Estimating potential soil erosion for environmental services in a sugarcane growing area using multisource remote sensing data. In: SPIE remote sensing. International Society for Optics and Photonics, pp 88871W-88810

    Google Scholar 

  • Nkonya E, Gerber N, Baumgartner P, Von Braun J, De Pinto A, Graw V, Kato E, Kloos J, Walter T (2011) The economics of desertification, land degradation, and drought: toward an integrated global assessment. ZEF Discussion Papers on Development Policy

    Google Scholar 

  • Oindo BO, de By RA, Skidmore AK (2000) Interannual variability of NDVI and bird species diversity in Kenya. Int J Appl Earth Obs Geoinf 2(3):172–180

    Article  Google Scholar 

  • Olsson L, Eklundh L, Ardö J (2005) A recent greening of the Sahel—trends, patterns and potential causes. J Arid Environ 63(3):556–566

    Article  Google Scholar 

  • Pan C, Zhao H, Zhao X, Han H, Wang Y, Li J (2013) Biophysical properties as determinants for soil organic carbon and total nitrogen in grassland salinization. PLoS One 8(1), e54827

    Article  Google Scholar 

  • Pearson RL, Miller LD (1972) Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sens Environ VIII:1355

    Google Scholar 

  • Pettorelli N (2013) The normalized difference vegetation index. Oxford University Press, Oxford

    Book  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard J-M, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510

    Article  Google Scholar 

  • Pettorelli N, Safi K, Turner W (2014) Satellite remote sensing, biodiversity research and conservation of the future. Philos Trans R Soc, B 369(1643):20130190

    Article  Google Scholar 

  • Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458(7241):1009–1013

    Article  Google Scholar 

  • Platonov A, Noble A, Kuziev R (2013) Soil salinity mapping using multi-temporal satellite images in agricultural fields of syrdarya province of Uzbekistan. In: Shahid SA, Abdelfattah MA, Taha FK (eds) Developments in soil salinity assessment and reclamation: innovative thinking and use of marginal soil and water resources in irrigated agriculture. Springer, London, pp 87–98

    Chapter  Google Scholar 

  • Prasannakumar V, Vijith H, Abinod S, Geetha N (2012) Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geosci Front 3(2):209–215

    Article  Google Scholar 

  • Purkis SJ, Klemas VV (2011) Remote sensing and global environmental change. Wiley, Oxford

    Book  Google Scholar 

  • Quarmby N, Milnes M, Hindle T, Silleos N (1993) The use of multi-temporal NDVI measurements from AVHRR data for crop yield estimation and prediction. Int J Remote Sens 14(2):199–210

    Article  Google Scholar 

  • Renschler CS, Frazier A, Arendt L, Cimellaro G-P, Reinhorn AM, Bruneau M (2010) A framework for defining and measuring resilience at the community scale: the PEOPLES resilience framework. MCEER, Buffalo

    Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Ã…, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ (2009) A safe operating space for humanity. Nature 461(7263):472–475

    Article  Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ET, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108(24):9899–9904

    Article  Google Scholar 

  • Shalaby A, Tateishi R (2007) Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl Geogr 27(1):28–41

    Article  Google Scholar 

  • Simoniello T, Lanfredi M, Liberti M, Coppola R, Macchiato M (2008) Estimation of vegetation cover resilience from satellite time series. Hydrol Earth Syst Sci Discuss 5(1):511–546

    Article  Google Scholar 

  • Sivakumar MV, Stefanski R (2007) Climate and land degradation—an overview. In: Climate and land degradation. Springer, New York, pp 105–135

    Chapter  Google Scholar 

  • Sobrino J, Raissouni N (2000) Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. Int J Remote Sens 21(2):353–366

    Article  Google Scholar 

  • Sternberg T, Tsolmon R, Middleton N, Thomas D (2011) Tracking desertification on the Mongolian steppe through NDVI and field-survey data. Int J Digital Earth 4(1):50–64

    Article  Google Scholar 

  • Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, Houston S, Racine C, Sturm M, Tape K (2004) Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens Environ 89(3):281–308

    Article  Google Scholar 

  • Symeonakis E, Drake N (2004) Monitoring desertification and land degradation over sub-Saharan Africa. Int J Remote Sens 25(3):573–592

    Article  Google Scholar 

  • Townshend JR, Goff TE, Tucker CJ (1985) Multitemporal dimensionality of images of normalized difference vegetation index at continental scales. IEEE Trans Geosci Remote Sens 6:888–895

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Tucker CJ, Nicholson SE (1999) Variations in the size of the Sahara Desert from 1980 to 1997. Ambio 28:587–591

    Google Scholar 

  • Tucker CJ, Holben BN, Elgin JH Jr, McMurtrey JE III (1981) Remote sensing of total dry-matter accumulation in winter wheat. Remote Sens Environ 11:171–189

    Article  Google Scholar 

  • Tucker C, Vanpraet CL, Sharman M, Van Ittersum G (1985) Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens Environ 17(3):233–249

    Article  Google Scholar 

  • Turner BL, Meyer WB (1994) Global land-use and land-cover change: an overview. In: Changes in land use and land cover: a global perspective, vol 4. Cambridge University Press, Cambridge, p 3

    Google Scholar 

  • Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18(6):306–314

    Article  Google Scholar 

  • UNCCD (1994) Elaboration of an international convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa. United Nations Convention to Combat Desertification, Paris

    Google Scholar 

  • UNEP (2012b) Sahel atlas of changing landscapes: tracing trends and variations in vegetation cover and soil condition. United Nations Environment Programme, Nairobi

    Google Scholar 

  • Veldkamp A, Lambin EF (2001) Predicting land-use change. Agr Ecosyst Environ 85(1):1–6

    Article  Google Scholar 

  • Wang J, Sammis TW, Gutschick VP, Gebremichael M, Dennis SO, Harrison RE (2010) Review of satellite remote sensing use in forest health studies. Open Geogr J 3:28–42

    Article  Google Scholar 

  • Yan H, Wang S, Wang C, Zhang G, Patel N (2005) Losses of soil organic carbon under wind erosion in China. Glob Chang Biol 11(5):828–840

    Article  Google Scholar 

  • Yeqiao W (2011) Remote sensing of protected lands. Remote sensing applications series. CRC Press, Boca Raton, pp 1–26. doi: 10.1201/b11453-210.1201/b11453-2

  • Yuan D, Elvidge C (1998) NALC land cover change detection pilot study: Washington DC area experiments. Remote Sens Environ 66(2):166–178

    Article  Google Scholar 

  • Zargar A, Sadiq R, Naser B, Khan FI (2011) A review of drought indices. Environ Rev 19(NA):333–349. doi:10.1139/a11-013

    Article  Google Scholar 

  • Zhou P, Luukkanen O, Tokola T, Nieminen J (2008) Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 75(3):319–325

    Article  Google Scholar 

  • Zinck A, Metternicht G (2008) Soil salinity and salinization hazard. In: Metternicht G, Zinck A (eds) Remote sensing of soil salinization: impact on land management. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Yengoh, G.T., Dent, D., Olsson, L., Tengberg, A.E., Tucker, C.J. (2015). Applications of NDVI for Land Degradation Assessment. In: Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-24112-8_3

Download citation

Publish with us

Policies and ethics