Skip to main content

Optical Polarization and Light Extraction from UV LEDs

  • Chapter
  • First Online:
III-Nitride Ultraviolet Emitters

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 227))

Abstract

In solid-state devices, light is generated by radiative transitions between the lowest conduction band and the highest valence subband. In wurtzite group III-nitride compound materials, the valence band is split into three subbands (heavy hole band, light hole band, and crystal field split-off band) each having a unique polarization state for electronic transitions. The ordering of these bands and hence the optical polarization is determined by the strain state, the aluminum mole fraction x of the Al x Ga1−x N alloy, and the quantum confinement. This has consequences for the optical polarization properties and for the extraction efficiency of the spontaneously emitted light generated in light-emitting diodes (LEDs). Furthermore, the high refractive index of the semiconductor material and the presence of absorbing metal contacts and p-semiconductor layers result in UV LEDs having a low extraction efficiency. In this chapter, the basic mechanisms of light extraction and the generation of polarized light in UV LEDs are discussed. Different concepts for improving the light extraction efficiency are presented. This includes reflective contacts, contact design, surface patterning and surface roughening, photonic crystals, plasmonics, and encapsulation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc., Orlando, 1985)

    Google Scholar 

  2. M. Bass, Handbook of Optics: Fundamentals, techniques, and design (McGraw-Hill, 1994)

    Google Scholar 

  3. J.-S. Kim, P.K.H. Ho, N.C. Greenham, R.H. Friend, Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations. J. Appl. Phys. 88(2), 1073–1081 (2000)

    Article  Google Scholar 

  4. M. Suzuki, T. Uenoyama, A. Yanase, First-principles calculations of effective-mass parameters of AlN and GaN. Phys. Rev. B 52, 8132–8139 (1995)

    Article  Google Scholar 

  5. J. Hopfdeld, Fine structure in the optical absorption edge of anisotropic crystals. J. Phys. Chem. Solids 15(12), 97–107 (1960)

    Article  Google Scholar 

  6. A.A. Yamaguchi, Y. Mochizuki, H. Sunakawa, A. Usui, Determination of valence band splitting parameters in GaN. J. Appl. Phys. 83(8), 4542–4544 (1998)

    Article  Google Scholar 

  7. N.V. Edwards, S.D. Yoo, M.D. Bremser, T.W. Weeks, O.H. Nam, R.F. Davis, H. Liu, R.A. Stall, M.N. Horton, N.R. Perkins, T.F. Kuech, D.E. Aspnes, Variation of GaN valence bands with biaxial stress and quantification of residual stress. Appl. Phys. Lett. 70(15), 2001–2003 (1997)

    Article  Google Scholar 

  8. I. Vurgaftman, J.R. Meyer, Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94(6), 3675–3696 (2003)

    Article  Google Scholar 

  9. A. Sedhain, J.Y. Lin, H.X. Jiang, Valence band structure of AlN probed by photoluminescence. Appl. Phys. Lett. 92(4), 041114 (2008)

    Article  Google Scholar 

  10. G.D. Chen, M. Smith, J.Y. Lin, H.X. Jiang, S. Wei, M. Asif Khan, C.J. Sun, Fundamental optical transitions in GaN. Appl. Phys. Lett. 68(20), 2784–2786 (1996)

    Article  Google Scholar 

  11. K.B. Nam, J. Li, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl. Phys. Lett. 84(25), 5264–5266 (2004)

    Article  Google Scholar 

  12. R. Goldhahn, C. Buchheim, P. Schley, A.T. Winzer, H. Wenzel, Optical Constants of Bulk Nitrides (Wiley-VCH Verlag GmbH & Co. KGaA, 2007)

    Google Scholar 

  13. J. Li, K.B. Nam, M.L. Nakarmi, J.Y. Lin, H.X. Jiang, P. Carrier, S.-H. Wei, Band structure and fundamental optical transitions in wurtzite AlN. Appl. Phys. Lett. 83(25), 5163–5165 (2003)

    Article  Google Scholar 

  14. B. Neuschl, J. Helbing, M. Knab, H. Lauer, M. Madel, K. Thonke, T. Meisch, K. Forghani, F. Scholz, M. Feneberg, Composition dependent valence band order in c-oriented wurtzite AlGaN layers. J. Appl. Phys. 116(11), 113506 (2014)

    Article  Google Scholar 

  15. C. Coughlan, S. Schulz, M.A. Caro, E.P. O’Reilly, Band gap bowing and optical polarization switching in Al1-x Ga x N alloys. Phys. Status Solidi (b) (2015)

    Google Scholar 

  16. T. Kolbe, A. Knauer, C. Chua, Z. Yang, S. Einfeldt, P. Vogt, N.M. Johnson, M. Weyers, M. Kneissl, Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 97(17), 171105 (2010)

    Article  Google Scholar 

  17. R.G. Banal, M. Funato, Y. Kawakami, Optical anisotropy in [0001]-oriented Al x Ga1−x N/AlN quantum wells (x>0.69). Phys. Rev. B 79, 121308 (2009)

    Article  Google Scholar 

  18. H. Kawanishi, M. Senuma, T. Nukui, Anisotropic polarization characteristics of lasing and spontaneous surface and edge emissions from deep-ultraviolet (240 nm) AlGaN multiple-quantum-well lasers. Appl. Phys. Lett. 89(4), 041126 (2006)

    Article  Google Scholar 

  19. C. Netzel, A. Knauer, M. Weyers, Impact of light polarization on photoluminescence intensity and quantum efficiency in AlGaN and AlInGaN layers. Appl. Phys. Lett. 101(24), 242102 (2012)

    Article  Google Scholar 

  20. J.E. Northrup, C.L. Chua, Z. Yang, T. Wunderer, M. Kneissl, N.M. Johnson, T. Kolbe, Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells. Appl. Phys. Lett. 100(2), 021101 (2012)

    Article  Google Scholar 

  21. T.K. Sharma, D. Naveh, E. Towe, Strain-driven light-polarization switching in deep ultraviolet nitride emitters. Phys. Rev. B 84, 035305 (2011)

    Article  Google Scholar 

  22. S.L. Chuang, C.S. Chang, k·p method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491–2504 (1996)

    Article  Google Scholar 

  23. D. Fu, R. Zhang, B. Liu, Z.L. Xie, X.Q. Xiu, H. Lu, Y.D. Zheng, G. Edwards, Exploring optimal UV emission windows for AlGaN and AlInN alloys grown on different templates. Phys. Status Solidi (b) 248(12), 2816–2820 (2011)

    Article  Google Scholar 

  24. T. Kolbe, A. Knauer, C. Chua, Z. Yang, V. Kueller, S. Einfeldt, P. Vogt, N.M. Johnson, M. Weyers, M. Kneissl, Effect of temperature and strain on the optical polarization of (In)(Al)GaN ultraviolet light emitting diodes. Appl. Phys. Lett. 99(26), 261105 (2011)

    Article  Google Scholar 

  25. A. Atsushi Yamaguchi, Valence band engineering for remarkable enhancement of surface emission in AlGaN deep-ultraviolet light emitting diodes. Phys. Status Solidi (c) 5(6), 2364–2366 (2008)

    Article  Google Scholar 

  26. T.M. Al tahtamouni, J.Y. Lin, H.X. Jiang, Optical polarization in c-plane Al-rich AlN/Al x Ga1−xN single quantum wells. Appl. Phys. Lett. 101(4), 042103 (2012)

    Article  Google Scholar 

  27. J.J. Wierer, I. Montao, M.H. Crawford, A.A. Allerman, Effect of thickness and carrier density on the optical polarization of Al0.44Ga0.56N/Al0.55Ga0.45N quantum well layers. J. Appl. Phys. 115(17), 174501 (2014)

    Article  Google Scholar 

  28. S.-H. Park, J.-I. Shim, Carrier density dependence of polarization switching characteristics of light emission in deep-ultraviolet AlGaN/AlN quantum well structures. Appl. Phys. Lett. 102(22), 221109 (2013)

    Article  Google Scholar 

  29. S. Wieczorek, W.W. Chow, S.R. Lee, A.J. Fischer, A.A. Allerman, M.H. Crawford, Analysis of optical emission from high-aluminum AlGaN quantum-well structures. Appl. Phys. Lett. 84(24), 4899–4901 (2004)

    Article  Google Scholar 

  30. A.A. Yamaguchi, Theoretical investigation of optical polarization properties in Al-rich AlGaN quantum wells with various substrate orientations. Appl. Phys. Lett. 96(15), 151911 (2010)

    Article  Google Scholar 

  31. J. Bhattacharyya, S. Ghosh, H.T. Grahn, Are AlN and GaN substrates useful for the growth of non-polar nitride films for UV emission? The oscillator strength perspective. Phys. Status Solidi (b) 246(6), 1184–1187 (2009)

    Article  Google Scholar 

  32. C.-P. Wang, Y.-R. Wu, Study of optical anisotropy in nonpolar and semipolar AlGaN quantum well deep ultraviolet light emission diode. J. Appl. Phys. 112(3), 033104 (2012)

    Article  Google Scholar 

  33. R.G. Banal, Y. Taniyasu, H. Yamamoto, Deep-ultraviolet light emission properties of nonpolar M-plane AlGaN quantum wells. Appl. Phys. Lett. 105(5), 053104 (2014)

    Article  Google Scholar 

  34. L. Schade, U.T. Schwarz, T. Wernicke, M. Weyers, M. Kneissl, Impact of band structure and transition matrix elements on polarization properties of the photoluminescence of semipolar and nonpolar InGaN quantum wells. Phys. Status Solidi (b) 248(3), 638–646 (2011)

    Article  Google Scholar 

  35. L. Schade, U.T. Schwarz, T. Wernicke, J. Rass, S. Ploch, M. Weyers, M. Kneissl, On the optical polarization properties of semipolar InGaN quantum wells. Appl. Phys. Lett. 99(5) (2011)

    Google Scholar 

  36. S.L. Chuang, C.S. Chang, k·p method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491–2504 (1996)

    Article  Google Scholar 

  37. H.B. Michaelson, The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729 (1977)

    Article  Google Scholar 

  38. E. Kalinia, N. Kuznetsov, V. Dmitriev, K. Iirvine, C. Carter, Schottky barriers on n-GaN grown on SiC. J. Electron. Mater. 25, 831 (1996)

    Article  Google Scholar 

  39. M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, M. Kneissl, Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN: Si and GaN: Si surfaces. Semicond. Sci. Technol. 28(12), 125015 (2013)

    Article  Google Scholar 

  40. J.-K. Ho, C.-S. Jong, C.C. Chiu, C.-N. Huang, K.-K. Shih, L.-C. Chen, F.-R. Chen, J.-J. Kai, Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films. J. Appl. Phys. 86, 4491 (1999)

    Article  Google Scholar 

  41. T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S. Asami, N. Shibata, M. Koike, Schottky barriers and contact resistances on p-type GaN. Appl. Phys. Lett. 69, 3537 (1996)

    Article  Google Scholar 

  42. C.I. Wu, A. Kahn, Investigation of the chemistry and electronic properties of metal/gallium nitride interfaces. J. Vac. Sci. Technol. B 16, 2218 (1998)

    Article  Google Scholar 

  43. C.-S. Lee, Y.-J. Lin, C.-T. Lee, Investigation of oxidation mechanism for ohmic formation in NiOAu contacts to p-type GaN layers. Appl. Phys. Lett. 79, 3815 (2001)

    Article  Google Scholar 

  44. H.W. Jang, S.Y. Kim, J.-L. Lee, Mechanism for ohmic contact formation of oxidized NiOAu on p-type GaN. J. Appl. Phys. 94, 1748 (2003)

    Article  Google Scholar 

  45. D.C. Look, D.C. Reynolds, J.W. Hemsky, J.R. Sizelove, R.L. Jones, R.J. Molnar, Defect donor and acceptor in GaN. Phys. Rev. Lett. 79, 2273–2276 (1997)

    Article  Google Scholar 

  46. K. Saarinen, T. Suski, I. Grzegory, D.C. Look, Thermal stability of isolated and complexed Ga vacancies in GaN bulk crystals. Phys. Rev. B 64, 233201 (2001)

    Article  Google Scholar 

  47. J. Neugebauer, C.G. van de Walle, Gallium vacancies and the yellow luminescence in GaN. Appl. Phys. Lett. 69, 503 (1996)

    Article  Google Scholar 

  48. N. Lobo, H. Rodriguez, A. Knauer, M. Hoppe, S. Einfeldt, P. Vogt, M. Weyers, M. Kneissl, Enhancement of light extraction in ultraviolet light-emitting diodes using nanopixel contact design with Al reflector. Appl. Phys. Lett. 96(8), 081109 (2010)

    Article  Google Scholar 

  49. J.K. Kim, J.-Q. Xi, H. Luo, E. Fred Schubert, J. Cho, C. Sone, Y. Park, Enhanced light-extraction in GaInN near-ultraviolet light-emitting diode with Al-based omnidirectional reflector having NiZn/Ag microcontacts. Appl. Phys. Lett. 89(14), 141123 (2006)

    Article  Google Scholar 

  50. T. Jeong, H.H. Lee, S.-H. Park, J.H. Baek, J.K. Lee, Ingan/algan ultraviolet light-emitting diode with a Ti3O5/Al2O3 distributed bragg reflector. Jpn. J. Appl. Phys. 47(12), 8811–8814 (2008)

    Article  Google Scholar 

  51. V. Adivarahan, S. Wu, W.H. Sun, V. Mandavilli, M.S. Shatalov, G. Simin, J.W. Yang, H.P. Maruska, M.A. Khan, High-power deep ultraviolet light-emitting diodes based on a micro-pixel design. Appl. Phys. Lett. 85(10), 1838–1840 (2004)

    Article  Google Scholar 

  52. S. Wu, V. Adivarahan, M. Shatalov, A. Chitnis, W.-H. Sun, M.A. Khan, Micro-pixel design milliwatt power 254 nm emission light emitting diodes. Jpn. J. Appl. Phys. 43(8A), L1035–L1037 (2004)

    Article  Google Scholar 

  53. H. Rodríguez, N. Lobo, S. Einfeldt, A. Knauer, M. Weyers, M. Kneissl, GaN-based ultraviolet light-emitting diodes with multifinger contacts. Phys. Status Solidi (a) 207(11), 2585–2588 (2010)

    Article  Google Scholar 

  54. A. Chakraborty, L. Shen, U.K. Mishra, Interdigitated multipixel arrays for the fabrication of high-power light-emitting diodes with very low series resistances, reduced current crowding, and improved heat sinking. IEEE Trans. Electron Dev. 54(5), 1083–1090 (2007)

    Article  Google Scholar 

  55. H. Choi, C. Jeon, M. Dawson, P. Edwards, R. Martin, Fabrication and performance of parallel-addressed InGaN micro-LED arrays. IEEE Photon. Technol. Lett 15(4), 510–512 (2003)

    Article  Google Scholar 

  56. N. Lobo Ploch, H. Rodriguez, C. Stolmacker, M. Hoppe, M. Lapeyrade, J. Stellmach, F. Mehnke, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, S. Einfeldt, M. Kneissl, Effective thermal management in ultraviolet light-emitting diodes with micro-LED arrays. IEEE Trans. Electron Dev. 60(2), 782–786 (2013)

    Article  Google Scholar 

  57. M.R. Krames, M. Ochiai-Holcomb, G.E. Hïfler, C. Carter-Coman, E.I. Chen, I.-H. Tan, P. Grillot, N.F. Gardner, H.C. Chui, J.-W. Huang, S.A. Stockman, F.A. Kish, M.G. Craford, T.S. Tan, C.P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, D. Collins, High-power truncated-inverted-pyramid (Al x Ga 1−x)0.5 In 0.5 P/GaP light-emitting diodes exhibiting > 50 % external quantum efficiency. Appl. Phys. Lett. 75(16), 2365–2367 (1999)

    Article  Google Scholar 

  58. J.J. Wierer, A.A. Allerman, I. Montao, M.W. Moseley, Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes. Appl. Phys. Lett. 105(6), 061106 (2014)

    Article  Google Scholar 

  59. T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 84(6), 855–857 (2004)

    Article  Google Scholar 

  60. C. Huh, K.-S. Lee, E.-J. Kang, S.-J. Park, Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface. J. Appl. Phys. 93(11), 9383–9385 (2003)

    Article  Google Scholar 

  61. D.-S. Han, J.-Y. Kim, S.-I. Na, S.-H. Kim, K.-D. Lee, B. Kim, S.-J. Park, Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate. IEEE Photon. Technol. Lett. 18, 1406–1408 (2006)

    Article  Google Scholar 

  62. W.S. Wong, T. Sands, N.W. Cheung, M. Kneissl, D.P. Bour, P. Mei, L.T. Romano, N.M. Johnson, Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off. Appl. Phys. Lett. 75(10), 1360–1362 (1999)

    Article  Google Scholar 

  63. M. Takeuchi, T. Maegawa, H. Shimizu, S. Ooishi, T. Ohtsuka, Y. Aoyagi, AlN/AlGaN short-period superlattice sacrificial layers in laser lift-off for vertical-type AlGaN-based deep ultraviolet light emitting diodes. Appl. Phys. Lett. 94(6), 061117 (2009)

    Article  Google Scholar 

  64. S.-H. Chuang, C.-T. Pan, K.-C. Shen, S.-L. Ou, D.-S. Wuu, R.-H. Horng, Thin film GaN LEDs using a patterned oxide sacrificial layer by chemical lift-off process. IEEE Photon. Technol. Lett. 25, 2435–2438 (2013)

    Article  Google Scholar 

  65. L. Zhou, J.E. Epler, M.R. Krames, W. Goetz, M. Gherasimova, Z. Ren, J. Han, M. Kneissl, N.M. Johnson, Vertical injection thin-film AlGaN/AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 89(24), 241113 (2006)

    Article  Google Scholar 

  66. R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G.H. Dïhler, B. Dutta, M. Kuijk, G. Borghs, P. Heremans, Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes. Appl. Phys. Lett. 79(15), 2315–2317 (2001)

    Article  Google Scholar 

  67. M. Khizar, Z.Y. Fan, K.H. Kim, J.Y. Lin, H.X. Jiang, Nitride deep-ultraviolet light-emitting diodes with microlens array. Appl. Phys. Lett. 86(17), 173504 (2005)

    Article  Google Scholar 

  68. T.N. Oder, K.H. Kim, J.Y. Lin, H.X. Jiang, III-nitride blue and ultraviolet photonic crystal light emitting diodes. Appl. Phys. Lett. 84(4), 466–468 (2004)

    Article  Google Scholar 

  69. J.J. Wierer, M.R. Krames, J.E. Epler, N.F. Gardner, M.G. Craford, J.R. Wendt, J.A. Simmons, M.M. Sigalas, InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures. Appl. Phys. Lett. 84(19), 3885–3887 (2004)

    Article  Google Scholar 

  70. J. Shakya, K.H. Kim, J.Y. Lin, H.X. Jiang, Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes. Appl. Phys. Lett. 85(1), 142–144 (2004)

    Article  Google Scholar 

  71. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, High-power, long-lifetime InGaN/GaN/AlGaN-based laser diodes grown on pure GaN substrates. Jpn. J. Appl. Phys. 37, L309 (1998)

    Article  Google Scholar 

  72. A. Sakai, H. Sunakawa, A. Usui, Defect structure in selectively grown GaN films with low threading dislocation density. Appl. Phys. Lett. 71, 2259 (1997)

    Article  Google Scholar 

  73. T.S. Zheleva, O.-H. Nam, M.D. Bremser, R.F. Davis, Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Appl. Phys. Lett. 71, 2472 (1997)

    Article  Google Scholar 

  74. V. Kueller, A. Knauer, C. Reich, A. Mogilatenko, M. Weyers, J. Stellmach, T. Wernicke, M. Kneissl, Z. Yang, C. Chua, N. Johnson, Modulated epitaxial lateral overgrowth of AlN for efficient UV LEDs. IEEE Photon. Technol. Lett. 24(18), 1603–1605 (2012)

    Article  Google Scholar 

  75. S. Hagedorn, V. Küller et al., private communication, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany

    Google Scholar 

  76. J.H. Kang, H.G. Kim, S. Chandramohan, H.K. Kim, H.Y. Kim, J.H. Ryu, Y.J. Park, Y.S. Beak, J.-S. Lee, J.S. Park, V.V. Lysak, C.-H. Hong, Improving the optical performance of InGaN light-emitting diodes by altering light reflection and refraction with triangular air prism arrays. Opt. Lett. 37, 88–90 (2012)

    Article  Google Scholar 

  77. M. Guttmann et al., private communication, TU Berlin, Institute of solid state physics

    Google Scholar 

  78. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, T. Mukai, InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode. Jpn. J. Appl. Phys. 41(Part 2, No. 12B), L1431–L1433 (2002)

    Google Scholar 

  79. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  Google Scholar 

  80. K. Okamoto, Y. Kawakami, High-efficiency InGaN/GaN light emitters based on nanophotonics and plasmonics. IEEE J. Sel. Topics Quant. Electron. 15(4), 1199–1209 (2009)

    Article  Google Scholar 

  81. D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, C. Yang, Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode. Appl. Phys. Lett. 91(17), 171103 (2007)

    Google Scholar 

  82. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C.C. Byeon, S.-J. Park, Surface-plasmon-enhanced light-emitting diodes. Adv. Mater. 20(7), 1253–1257 (2008)

    Article  Google Scholar 

  83. N. Gao, K. Huang, J. Li, S. Li, X. Yang, J. Kang, Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells. Sci. Rep. 2, 5 (2012)

    Google Scholar 

  84. J.V. DeGroot, Jr., A. Norris, S.O. Glover, T.V. Clapp, Highly transparent silicone materials (2004)

    Google Scholar 

  85. K. Yamada, Y. Furusawa, S. Nagai, A. Hirano, M. Ippommatsu, K. Aosaki, N. Morishima, H. Amano, I. Akasaki, Development of underfilling and encapsulation for deep-ultraviolet LEDs. Appl. Phys. Exp. 8(1), 012101 (2015)

    Article  Google Scholar 

  86. R. Kremzow, private communication, TU Berlin, Institute of solid state physics

    Google Scholar 

  87. J.J. Wierer, D.A. Steigerwald, M.R. Krames, J.J. OShea, M.J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P.S. Martin, S. Subramanya, W. Götz, N.F. Gardner, R.S. Kern, S.A. Stockman, High-power AlGaInN flip-chip light-emitting diodes. Appl. Phys. Lett. 78(22), 3379–3381 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Rass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rass, J., Lobo-Ploch, N. (2016). Optical Polarization and Light Extraction from UV LEDs. In: Kneissl, M., Rass, J. (eds) III-Nitride Ultraviolet Emitters. Springer Series in Materials Science, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-24100-5_6

Download citation

Publish with us

Policies and ethics