Skip to main content

UV Fluorescence Detection and Spectroscopy in Chemistry and Life Sciences

  • Chapter
  • First Online:
Book cover III-Nitride Ultraviolet Emitters

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 227))

Abstract

Fluorescence techniques are nondestructive analytical methods used in a wide range of applications. Since many fluorophores of interest can be excited with UV light and nowadays compact solid-state UV emitters are available, UV fluorescence methods are emerging. The chapter will give a survey of both fundamentals and applications of fluorescence in chemistry and life sciences emphasizing actual and potential applications of solid-state UV emitters. Particular attention is drawn to the use of autofluorescence spectroscopy for the detection of microorganisms and as diagnostic method for skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer Science+Business Media, New York, 2006)

    Book  Google Scholar 

  2. J.R. Lakowicz, C.D. Geddes (eds.), Topics in Fluorescence Spectroscopy (Springer, Berlin, 1991)

    Google Scholar 

  3. O.S. Wolfbeis, M. Hof (eds.), Springer Series on Fluorescence, Methods and Applications, vol. 1–13 (Springer, Berlin, 2001–2013)

    Google Scholar 

  4. B. Valeur, Molecular Fluorescence—Principles and Applications (Wiley, Weinheim, 2006)

    Google Scholar 

  5. G.G. Guilbault (ed.), Practical Fluorescence, 2nd edn. (Marcel Dekker, New York, 1990)

    Google Scholar 

  6. P.N. Prasad, Introduction to biophotonics (Wiley, Hoboken, 2003)

    Book  Google Scholar 

  7. J. Popp, V.V. Tuchin, A. Chiou, S.H. Heinemann (Eds.), Handbook of Biophotonics, Vol. 1–3 (Wiley-VCH, New York, 2011)

    Google Scholar 

  8. S. Das, A.M. Powe, G.A. Baker, B. Valle, B. El-Zahab, H.O. Sintim, M. Lowry, S.O. Fakayode, M.E. McCarroll, G. Patonay, M. Li, R.M. Strongin, M.L. Geng, I.M. Warner, Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal. Chem. 84(2), 597–625 (2012)

    Article  Google Scholar 

  9. A. Jablonski, Über den Mechanismus der Photolumineszenz von Farbstoffphosphoren. Z. Phys. 94(1–2), 38–46 (1935)

    Article  Google Scholar 

  10. G.G. Stokes, On the Change of Refrangibility of Light. Philos. Trans. R. Soc. Lond. 142, 463–562 (1852)

    Article  Google Scholar 

  11. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248(4951), 73–76 (1990)

    Article  Google Scholar 

  12. S. Eshlaghi, W. Worthoff, A. Wieck, D. Suter, Luminescence upconversion in GaAs quantum wells. Phys. Rev. B 77, 245317 (2008)

    Article  Google Scholar 

  13. Y. Wang, F. Nan, X. Liu, L. Zhou, X. Peng, Z. Zhou, Y. Yu, Z. Hao, Y. Wu, W. Zhang, Q. Wang, Z. Zhang, Plasmon-enhanced light harvesting of chlorophylls on near-percolating silver films via one-photon anti-stokes upconversion. Sci. Rep. 3, 1861 (2013)

    Google Scholar 

  14. K. Rurack, Fluorescence quantum yields: methods of determination and standards. in Standardization and Quality Assurance in Fluorescence Measurements I, ed. by U. Resch-Genger (Springer, Berlin, 2008), pp. 101–145

    Google Scholar 

  15. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd edn. (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  16. E.L. Wehry, Effects of molecular environment on fluorescence and phosphorescence, in Practical Fluorescence, 2nd edn., ed. by G.G. Guilbault (Marcel Dekker Inc, New York, 1990)

    Google Scholar 

  17. E. Fort, S. Gresillon, Surface enhanced fluorescence. J. Phys. D Appl. Phys. 41, 013001 (2008)

    Article  Google Scholar 

  18. C. Pöhlker, J.A. Huffman, U. Pöschl, Autofluorescence of atmospheric bioaerosols—fluorescent biomolecules and potential interferences. Atmos. Meas. Tech. 5, 37–71 (2012)

    Article  Google Scholar 

  19. L.D. Lavis, R.T. Raines, Bright ideas for chemical biology. ACS Chem. Biol. 3, 142–155 (2008)

    Article  Google Scholar 

  20. C.A. Stedmon, R. Bro, Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr. Methods 6, 572–579 (2008)

    Article  Google Scholar 

  21. H. Peng, E. Makarona, Y. He, Y.-K. Song, A.V. Nurmikko, J. Su, Z. Ren, M. Gherasimova, S.-R. Jeon, G. Cui, J. Han, Ultraviolet light-emitting diodes operating in the 340 nm wavelength range and application to time-resolved fluorescence spectroscopy. Appl. Phys. Lett. 85, 1436–1438 (2004)

    Article  Google Scholar 

  22. C.D. McGuinness, K. Sagoo, D. McLoskey, D.J.S. Birch, Selective excitation of tryptophan fluorescence decay in proteins using a subnanosecond 295 nm light-emitting diode and time-correlated single-photon counting. Appl. Phys. Lett. 86, 261911 (2005)

    Article  Google Scholar 

  23. C.D. McGuinness, A.M. Macmillan, K. Sagoo, D. McLoskey, D.J.S. Birch, Excitation of fluorescence decay using a 265 nm pulsed light-emitting diode: Evidence for aqueous phenylalanine rotamers. Appl. Phys. Lett. 89, 063901 (2006)

    Article  Google Scholar 

  24. D.V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic Press, London, 1984)

    Google Scholar 

  25. W. Becker, Advanced time-correlated single-photon counting techniques (Springer, Berlin, 2005)

    Book  Google Scholar 

  26. W. Becker, The bh TCSPC Handbook, 5th edn. (Becker & Hickl GmbH, Berlin, 2008), http://www.becker-hickl.de/

  27. F. Rouessac, ‎A. Rouessac, Fluorimetry and chemiluminescence (Chap.11). in Chemical Analysis: Modern Instrumentation Methods and Techniques, 2nd edn. (John Wiley & Sons Ltd, Chichester, 2007)

    Google Scholar 

  28. M. Matsuoka, M. Saito, M. Anpo, Photoluminescence Spectroscopy, in Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, ed. by M. Che, J.C. Vedrine (Wiley-VCH, Weinheim, 2012)

    Google Scholar 

  29. L. Bergman, J.L. McHale (Eds.), Handbook of Luminescent Semiconductor Materials (CRC Press, Boca Raton, 2011)

    Google Scholar 

  30. S. Das, A.M. Powe, G.A. Baker, B. Valle, B. El-Zahab, H.O. Sintim, M. Lowry, S.O. Fakayode, M.E. McCarroll, G. Patonay, M. Li, R.M. Strongin, M.L. Geng, I.M. Warner, Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal. Chem. 84, 597–625 (2011)

    Article  Google Scholar 

  31. N. Her, G. Amy, D. McKnight, J. Sohn, Y. Yoon, Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC and fluorescence detection. Water Res. 37, 42954303 (2003)

    Article  Google Scholar 

  32. Y.-S. Chang, C.-M. Shih, C.-H. Lin, UV light-emitting diode-induced fluorescence detection combined with online sample concentration techniques for capillary electrophoresis. Anal. Sci. 22, 235–240 (2006)

    Article  Google Scholar 

  33. A. Rodat-Boutonnet, P. Naccache, A. Morin, J. Fabre, B. Feurer, F. Couderc, A comparative study of LED-induced fluorescence and laser-induced fluorescence in SDS-CGE: application to the analysis of antibodies. Electrophoresis 33, 1709–1714 (2012)

    Article  Google Scholar 

  34. C. Sluszny, Y. He, E.S. Yeung, Light-emitting diode-induced fluorescence detection of native proteins in capillary electrophoresis. Electrophoresis 26, 4197–4203 (2005)

    Article  Google Scholar 

  35. J.R. Albani, Fluorescence spectroscopy in food analysis. In Encyclopedia of Analytical Chemistry (Wiley Online Libary, 2012)

    Google Scholar 

  36. J. Christensen, L. Norgaard, R. Bro, S.B. Engelsen, Multivariate autofluorescence of intact food systems. Chem. Rev. 106(6), 1979–1994 (2006)

    Article  Google Scholar 

  37. E. Sikorska, I. Khmelinskii, M. Sikorski, Analysis of olive oils by fluorescence spectroscopy: methods and applications. in Olive Oil—Constituents, Quality, Health Properties and Bioconversions, ed. by B. Dimitrios (InTech, Rijeka, 2012)

    Google Scholar 

  38. O.S. Wolfbeis, M. Leiner, Mapping of the total fluorescence of human blood serum as a new method for its characterization. Anal. Chim. Acta 167, 203–215 (1985)

    Article  Google Scholar 

  39. L. Bu-hong, Z. Zhen-xi, X. Shu-sen, C. Rong, Fluorescence spectral characteristics of human blood and its endogenous fluorophores. Spectrosc. Spectr. Anal. 26, 1310–1313 (2006)

    Google Scholar 

  40. A.E. Siegrist, C. Eckhardt, J. Kaschig, E. Schmidt, Optical Brighteners. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, New York, 2003)

    Google Scholar 

  41. P.A. Pantoja, J. López-Gej, G.A.C. Le Roux, F.H. Quina, C.A.O. Nascimento, Prediction of crude oil properties and chemical composition by means of steady-state and time-resolved fluorescence. Energy Fuels 25(8), 3598–3604 (2011)

    Article  Google Scholar 

  42. M. Dobbs, J. Kelsoe, D. Haas, UV counterfeit currency detector, US 7715613 B2 (2006)

    Google Scholar 

  43. M.C. Storrie-Lombardi, J.P. Muller, M.R. Fisk, C. Cousins, B. Sattler, A.D. Griffiths, A.J. Coates, Laser-Induced Fluorescence Emission (L.I.F.E.): searching for Mars organics with a UV-enhanced PanCam. Astrobiology 9(10), 953–964 (2009)

    Article  Google Scholar 

  44. G. Zheng, K. He, F. Duan, Y. Cheng, Y. Ma, Measurement of humic-like substances in aerosols: a review. Environ. Pollut. 181, 301–314 (2013)

    Article  Google Scholar 

  45. S.K.L. Ishii, T.H. Boyer, Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review. Environ. Sci. Technol. 46, 2006–2017 (2012)

    Article  Google Scholar 

  46. J. Bridgeman, M. Bieroza, A. Baker, The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment. Rev. Environ. Sci. Biotechnol. 10, 277–290 (2011)

    Article  Google Scholar 

  47. A. Andrade-Eiroa, M. Canle, V. Cerdá, Environmental applications of excitation-emission spectrofluorimetry: an in-depth review I. Appl. Spectroscopy Rev. 48, 1–49 (2013)

    Article  Google Scholar 

  48. S.A. Baghoth, S.K. Sharma, G.L. Amy, Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC. Water Res. 45, 797–809 (2011)

    Article  Google Scholar 

  49. C. Goletz, M. Wagner, A. Grübel, W. Schmidt, N. Korf, P. Werner, Standardization of fluorescence excitation-emission-matrices in aquatic milieu. Talanta 85, 650–656 (2011)

    Article  Google Scholar 

  50. S.J. Hart, R.D. JiJi, Light emitting diode excitation emission matrix fluorescence spectroscopy. Analyst 127, 1693–1699 (2002)

    Article  Google Scholar 

  51. P. Desjardins, J.B. Hansen, M. Allen, Microvolume spectrophotometric and fluorometric determination of protein concentration. Curr. Protoc. Protein Sci. Unit 3.10 (2009). doi:10.1002/0471140864.ps0310s55

    Google Scholar 

  52. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008)

    Article  Google Scholar 

  53. Q.A. Zhao, F.Y. Li, C.H. Huang, Phosphorescent chemosensors based on heavy metal complexes. Chem. Soc. Rev. 39, 3007–3030 (2010)

    Article  Google Scholar 

  54. H.N. Kim, Z. Guo, W. Zhu, J. Yoon, H. Tian, Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev. 40, 79–93 (2011)

    Article  Google Scholar 

  55. A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)

    Article  Google Scholar 

  56. T. Koshida, T. Arakawa, T. Gessei, D. Takahashi, H. Kudo, H. Saito, K. Yano, K. Mitsubayashi, Fluorescence biosensing system with a UV-LED excitation for l-leucine detection. Sens. Actuators B 146, 177–182 (2010)

    Article  Google Scholar 

  57. H. Kudo, M. Sawai, X. Wang, To Gessei, T. Koshida, K. Miyajima, H. Saito, K. Mitsubayashi, A NADH-dependent fiber-optic biosensor for ethanol determination with a UV-LED excitation system. Sens. Actuators 141, 20–25 (2009)

    Article  Google Scholar 

  58. R.Y. Tsien, The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998)

    Article  Google Scholar 

  59. N.C. Shaner, P.A. Steinbach, R.Y. Tsien, A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005)

    Article  Google Scholar 

  60. M. Chalfie, S.R. Kain (Eds.), Green fluorescent protein: properties, applications and protocols. in Methods of Biochemical Analysis, vol. 47, 2nd edn. (John Wiley and Sons, Hoboken, 2006)

    Google Scholar 

  61. E. Eltzov, R.S. Marks, Whole-cell aquatic biosensors. Anal. Bioanal. Chem. 400, 895–913 (2011)

    Article  Google Scholar 

  62. J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, D.J.S. Birch, Fluorescence-based glucose sensors. Biosens. Bioelectron. 20, 2555–2565 (2005)

    Article  Google Scholar 

  63. Y. Lei, W. Chen, A. Mulchandani, Microbial biosensors. Anal. Chim. Acta 568, 200–210 (2006)

    Article  Google Scholar 

  64. Y.-F. Li, F.-Y. Li, C.-L. Ho, V.H.-C. Liao, Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environ. Pollut. 152, 123–129 (2008)

    Article  Google Scholar 

  65. L. Stiner, L.J. Halverson, Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl. Environ. Microbiol. 68, 1962–1971 (2002)

    Article  Google Scholar 

  66. J. Theytaz, T. Braschler, H. van Lintel, P. Renaud, E. Diesel, D. Merulla, J. van der Meer, Biochip with E. coli bacteria for detection of arsenic in drinking water. Procedia Chem. 1(1), 1003–1006 (2009)

    Article  Google Scholar 

  67. R.M. Bukowski, R. Ciriminna, M. Pagliaro, F.V. Bright, High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)3]2+. Anal. Chem. 77, 2670–2672 (2005)

    Article  Google Scholar 

  68. S.M. Grist, L. Chrostowski, K.C. Cheung, Optical oxygen sensors for applications in microfluidic cell culture. Sensors 10, 9286–9316 (2010)

    Article  Google Scholar 

  69. J. Biwersi, B. Tulk, A.S. Verkman, Long-wavelength chloride-sensitive fluorescent indicators. Anal. Biochem. 219, 139–143 (1994)

    Article  Google Scholar 

  70. O.S. Wolfbeis, A. Sharma, Fibre-optic fluorosensor for sulphur dioxide. Anal. Chim. Acta 208, 53–58 (1988)

    Article  Google Scholar 

  71. G.M. Omann, J.R. Lakowicz, Interactions of chlorinated hydrocarbon insecticides with membranes. Biochem. Biophys. Acta 648, 83–95 (1982)

    Article  Google Scholar 

  72. G.N.M. van der Krogt, J. Ogink, B. Ponsioen, K. Jalink, A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example. PLoS one 3 (2008). doi:10.1371/journal.pone.0001916

    Google Scholar 

  73. P. Buet, B. Gersch, E. Grell, Spectral properties, cation selectivity and dynamic efficiency of fluorescent alkali ion indicators in aqueous solution around neutral pH. J. Fluoresc. 11, 79–87 (2001)

    Article  Google Scholar 

  74. T. Thestrup, J. Litzlbauer, I. Bartholomäus, M. Mues, L. Russo, H. Dana, Y. Kovalchuk, Y. Liang, G. Kalamakis, Y. Laukat, S. Becker, G. Witte, A. Geiger, T. Allen, L.C. Rome, T.-W. Chen, D.S. Kim, O. Garaschuk, C. Griesinger, O. Griesbeck, Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11, 175–182 (2014)

    Article  Google Scholar 

  75. I.D. Johnson, M.T.Z. Spence (eds.), in The Molecular Probes Handbook. A Guide to Fluorescent Probes and Labeling Technologies, 11th edn. (Life Technologies Corporation, 2010)

    Google Scholar 

  76. K.P. Carter, A.M. Young, A.E. Palmer, Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 114(8), 4564–4601 (2014)

    Article  Google Scholar 

  77. Z. Xu, J. Yoon, D.R. Spring, Fluorescent chemosensors for Zn2+. Chem. Soc. Rev. 39, 1996–2006 (2010)

    Article  Google Scholar 

  78. E. Eltzov, R.S. Marks, Fiber-optic based cell sensors. in Whole Cell Sensing Systems I, ed. by S. Belkin, M.B. Gu (Springer, Berlin, 2010), pp. 131–154

    Google Scholar 

  79. A.F. Collings, F. Caruso, Biosensors: recent advances. Rep. Prog. Phys. 60(11), 1397 (1997)

    Article  Google Scholar 

  80. M. Pagliaro, Silica-Based Materials for Advanced Chemical Applications, Chapter 6 (RSC Publishing, Cambridge, 2009)

    Google Scholar 

  81. A. Pannier, U. Soltmann, Potential applications of sol-gel immobilized microorganisms for bioremediation systems and biosensors. in Advances in Materials Science Research, vol. 12. Ed. by M.C. Wythers (Nova Science Publishers, New York, 2012)

    Google Scholar 

  82. B. Rudolph, K. Weber, R. Möller, Biochips as novel bioassays. in Handbook of Biophotonics, vol. 2, ed. by J. Popp, V.V. Tuchin, A. Chiou, S.H. Heinemann (Wiley-VCH, New York, 2012)

    Google Scholar 

  83. J.C. Venter, M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G. Sutton, H.O. Smith, M. Yandell, C.A. Evans, R.A. Holt, The sequence of the human genome. Science 291, 1304–1351 (2001)

    Google Scholar 

  84. T. Gustavsson, R. Improta, D. Markovitsi, DNA: building blocks of life under UV irradiation. J. Phys. Chem. Lett. 1, 2025–2030 (2010)

    Article  Google Scholar 

  85. F. Erfurth, A. Tretyakov, B. Nyuyki, G. Mrotzek, W.-D. Schmidt, D. Fassler, H.P. Saluz, Two-laser, large-field hyperspectral microarray scanner for the analysis of multicolor microarrays. Anal. Chem. 80, 7706–7713 (2008)

    Article  Google Scholar 

  86. M.A. Coleman, V.H. Lao, B.W. Segelke, P.T. Beernink, High-throughput, fluorescence-based screening for soluble protein expression. J. Proteome Res. 3, 1024–1032 (2004)

    Article  Google Scholar 

  87. S. Kreusch, S. Schwedler, B. Tautkus, G.A. Cumme, A. Horn, UV measurements in microplates suitable for high-throughput protein determination. Anal. Biochem. 313, 208–215 (2003)

    Article  Google Scholar 

  88. J. Hallbauer, S. Kreusch, A. Klemm, G. Wolf, H. Rhode, Long-term serum proteomes are quite similar under high-and low-flux hemodialysis treatment. Proteomics Clin. Appl. 4, 953–961 (2010)

    Article  Google Scholar 

  89. P. Schulze, M. Ludwig, F. Kohler, D. Belder, Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis. Anal. Chem. 77(5), 1325–1329 (2005)

    Article  Google Scholar 

  90. H. Szmacinski, K. Ray, J.R. Lakowicz, Metal-enhanced fluorescence of tryptophan residues in proteins: application toward label-free bioassays. Anal. Biochem. 385(2), 358–364 (2009)

    Article  Google Scholar 

  91. M. Schäferling, The art of fluorescence imaging with chemical sensors. Angew. Chem. Int. Ed. 51, 3532–3554 (2012)

    Article  Google Scholar 

  92. J.T. Wessels, U. Pliquett, F.S. Wouters, Light-emitting diodes in modern microscopy—From David to Goliath? Cytometry Part A 81, 188–197 (2012)

    Article  Google Scholar 

  93. B. Hermann, Fluorescence Microscopy, 2nd edn. (Bios Scientific Publishers, Oxford, 1998)

    Google Scholar 

  94. H.R. Petty, Fluorescence microscopy: established and emerging methods, experimental strategies and applications in immunology. Microsc. Res. Tech. 70, 687–709 (2007)

    Article  Google Scholar 

  95. H. Kobayashi, M. Ogawa, R. Alford, P.L. Choyke, Y. Urano, New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2009)

    Article  Google Scholar 

  96. F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, M. Réfrégiers, Deep UV autofluorescence microscopy for cell biology and tissue histology. Biol. Cell 105, 277–288 (2013)

    Article  Google Scholar 

  97. E. Silk, LED fluorescence microscopy in theory and practice. The Microscope 50(2/3), 101–118 (2002)

    Google Scholar 

  98. L.W. Reza, S. Satyanarayna, D.A. Enarson, A.W.V. Kumar, K. Sagili, S. Kumar, L.A. Prabhakar, N.M. Devendrappa, A. Pandey, N. Wilson, S. Chadha, B. Thapa, K.S. Sachdeva, M.P. Kohli, LED-fluorescence microscopy for diagnosis of pulmonary tuberculosis under programmatic conditions in India. PLoS ONE 8(10), e75566 (2013). doi:10.1371/journal.pone.0075566

    Article  Google Scholar 

  99. M. Schüttpelz, C. Müller, H. Neuweiler, M. Sauer, UV fluorescence lifetime imaging microscopy: a label-free method for detection and quantification of protein interactions. Anal. Chem. 78, 663–669 (2006)

    Article  Google Scholar 

  100. M. Minsky, Microscopy Apparatus US 3013467 A (1957)

    Google Scholar 

  101. J.M. Levsky, R.H. Singer, Fluorescence in situ hybridization: past, present and future. J. Cell Sci. 116, 2833–2838 (2003)

    Article  Google Scholar 

  102. J. Bayani, J.A. Squire, Advances in the detection of chromosomal aberrations using spectral karyotyping. Clin. Genet. 59, 65–73 (2001)

    Article  Google Scholar 

  103. T. Liehr, A. Weise, A.B. Hamid, X. Fan, E. Klein, N. Aust, M.A.K. Othman, K. Mrasek, N. Kosyakova, Multicolor FISH methods in current clinical diagnostics. Expert Rev. Mol. Diagn. 13, 251–255 (2013)

    Article  Google Scholar 

  104. D. Jin, R. Connally, J. Piper, Practical time-gated luminescence flow cytometry II: experimental evaluation using UV LED excitation. Cytometry Part A 71, 797–808 (2007)

    Article  Google Scholar 

  105. A.A. Bhagat, S.S. Kuntaegowdanahalli, N. Kaval, C.J. Seliskar, I. Papautsky, Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices 12, 187–195 (2010)

    Article  Google Scholar 

  106. S. Köhler, S. Nagl, S. Fritzsche, D. Belder, Label-free real-time imaging in microchip free-flow electrophoresis applying high speed deep UV fluorescence scanning. Lab Chip 12(3), 458–463 (2012)

    Article  Google Scholar 

  107. H. Zhu, S. Mavandadi, A.F. Coskun, O. Yaglidere, A. Ozcan, Optofluidic fluorescent imaging cytometry on a cell phone. Anal. Chem. 83(17), 6641–6647 (2011)

    Article  Google Scholar 

  108. O. Lazcka, F. Campo, F.X. Munoz, Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22, 1205–1217 (2007)

    Article  Google Scholar 

  109. V. Jasson, L. Jacxsens, P. Luning, A. Rajkovic, M. Uyttendaele, Alternative microbial methods: an overview and selection criteria. Food Microbiol. 27, 710–730 (2010)

    Article  Google Scholar 

  110. A.P. Kilungo, N. Carlton-Carew, L.S. Powers, Continuous real-time detection of microbial contamination in water using intrinsic fluorescence. J. Biosens. Bioelectron. 12, 3 (2013)

    Google Scholar 

  111. L.S. Powers, W.R. Ellis, C.R. Lloyd, Real-time In-situ detection of microbes. J. Biosens. Bioelectron. Spec. Iss. S11 (2012)

    Google Scholar 

  112. M.S. Ammor, Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization. J. Fluoresc. 17, 455–459 (2007)

    Article  Google Scholar 

  113. H.D. Smith, A.G. Duncan, P.L. Neary, C.R. Lloyd, A.J. Anderson, R.C. Sims, C.P. McKay, In situ microbial detection in mojave desert soil using native fluorescence. Astrobiology 12, 247–257 (2012)

    Article  Google Scholar 

  114. H.-Y. Kim, C.R. Estes, A.G. Duncan, B.D. Wade, F.C. Cleary, C.R. Lloyd, W.R. Ellis Jr, L.S. Powers, Real-time detection of microbial contamination. Eng. Med. Biol. Mag. IEEE 23, 122–129 (2004)

    Article  Google Scholar 

  115. M. Fischer, M. Wahl, G. Friedrichs, Design and field application of a UV-LED based optical fiber biofilm sensor. Biosens. Bioelectron. 33, 172–178 (2012)

    Article  Google Scholar 

  116. L.R. Dartnell, T.A. Roberts, G. Moore, J.M. Ward, J-Pr Muller, Fluorescence characterization of clinically-important bacteria. PLoS ONE 8, e75270 (2013)

    Article  Google Scholar 

  117. R. Bhartia, E.C. Salas, W.F. Hug, R.D. Reid, A.L. Lane, K.J. Edwards, K.H. Nealson, Label-free bacterial imaging with deep-UV-laser-induced native fluorescence. Appl. Environ. Microbiol. 76, 7231–7237 (2010)

    Article  Google Scholar 

  118. W. Jun, M.S. Kim, B.-K. Cho, P.D. Millner, K. Chao, D.E. Chan, Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging. J. Food Eng. 99, 314–322 (2010)

    Article  Google Scholar 

  119. M.S. Shur, R. Gaska, Deep-ultraviolet light-emitting diodes. IEEE Trans. Electron Devices 57, 12–25 (2010)

    Article  Google Scholar 

  120. M. Sohn, D.S. Himmelsbach, F.E. Barton, P.J. Fedorka-Cray, Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens. Appl. Spectrosc. 63, 1251–1255 (2009)

    Article  Google Scholar 

  121. S. Ammor, K. Yaakoubi, I. Chevallier, E. Dufour, Identification by fluorescence spectroscopy of lactic acid bacteria isolated from a small-scale facility producing traditional dry sausages. J. Microbiol. Methods 59, 271–281 (2004)

    Article  Google Scholar 

  122. B. Tourkya, T. Boubellouta, E. Dufour, F. Leriche, Fluorescence spectroscopy as a promising tool for a polyphasic approach to pseudomonad taxonomy. Curr. Microbiol. 58, 39–46 (2009)

    Article  Google Scholar 

  123. H. Wang, J. Wang, J. Xu, R.-X. Cai, Study on the influence of potassium iodate on the metabolism of Escherichia coli by intrinsic fluorescence. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 64, 316–320 (2006)

    Article  Google Scholar 

  124. H.E. Giana, L. Silveira Jr, R.A. Zângaro, M.T.T. Pacheco, Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis. J. of Fluoresc. 13, 489–493 (2003)

    Article  Google Scholar 

  125. V.R. Després, J.A. Huffman, S.M. Burrows, C. Hoose, A.S. Safatov, G. Buryak, J. Fröhlich-Nowoisky, W. Elbert, M.O. Andreae, U. Pöschl, R. Jaenicke, Primary biological aerosol particles in the atmosphere: a review. Tellus B 64 (2012)

    Google Scholar 

  126. K.M. Davitt, Ultraviolet Light Emitting Diodes and Bio-aerosol Sensing, PhD thesis, Brown University (2006)

    Google Scholar 

  127. A. Manninen, M. Putkiranta, J. Saarela, A. Rostedt, T. Sorvajärvi, J. Toivonen, M. Marjamäki, J. Keskinen, R. Hernberg, Fluorescence cross sections of bioaerosols and suspended biological agents. Appl. Opt. 48, 4320–4328 (2009)

    Article  Google Scholar 

  128. J. Popp, V.V. Tuchin, A. Chiou, S.H. Heinemann (eds.), Handbook of Biophotonics, Vol. 2, 1st edn. (Wiley-VCH, New York, 2012)

    Google Scholar 

  129. D.C.G. De Veld, M.J.H. Witjes, H.J.C.M. Sterenborg, J.L.N. Roodenburg, The status of in vivo autofluorescence spectroscopy and imaging for oral oncology. Oral Oncol. 41, 117–131 (2005)

    Article  Google Scholar 

  130. C. Arens, D. Reussner, H. Neubacher, J. Woenckhaus, H. Glanz, Spectrometric measurement in laryngeal cancer. Eur. Arch. Otorhinolaryngol. 263, 1001–1007 (2006)

    Article  Google Scholar 

  131. V.R. Jacobs, S. Paepke, H. Schaaf, B.-C. Weber, M. Kiechle-Bahat, Autofluorescence ductoscopy: a new imaging technique for intraductal breast endoscopy. Clin. Breast Cancer 7, 619–623 (2007)

    Article  Google Scholar 

  132. B. Mayinger, P. Horner, M. Jordan, C. Gerlach, T. Horbach, W. Hohenberger, E.G. Hahn, Endoscopic fluorescence spectroscopy in the upper GI tract for the detection of GI cancer: initial experience. Am. J. Gastroenterol. 96, 2616–2621 (2001)

    Article  Google Scholar 

  133. B. Mayinger, M. Jordan, P. Horner, C. Gerlach, S. Muehldorfer, B.R. Bittorf, K.E. Matzel, W. Hohenberger, E.G. Hahn, K. Guenther, Endoscopic light-induced autofluorescence spectroscopy for the diagnosis of colorectal cancer and adenoma. J. Photochem. Photobiol. B, Biol. 70, 13–20 (2003)

    Article  Google Scholar 

  134. N.M. Broer, T. Liesenhoff, H.-H. Horch, Laser induced fluorescence spectroscopy for real-time tissue differentiation. Med. Laser Appl. 19, 45–53 (2004)

    Article  Google Scholar 

  135. J. Hegyi, V. Hegyi, T. Ruzicka, P. Arenberger, C. Berking, New developments in fluorescence diagnostics. J. Dtsch. Dermatol. Ges. 9, 368–372 (2011)

    Google Scholar 

  136. J. Margarot, P. Devèze, Aspect de quelques dermatoses en lumière ultraparaviolette. Note prèliminaire. Bull. Soc. Sci. Med. Biol. Montpellier 6, 375–378 (1925)

    Google Scholar 

  137. P. Asawanonda, C.R. Taylor, Wood’s light in dermatology. Int. J. Dermatol. 38, 801–807 (1999)

    Article  Google Scholar 

  138. M. Burroni, R. Corona, G. Dell’Eva, F. Sera, R. Bono, P. Puddu, R. Perotti, F. Nobile, L. Andreassi, P. Rubegni, Melanoma computer-aided diagnosis: reliability and feasibility study. Clin. Cancer Res. 10, 1881–1886 (2004)

    Article  Google Scholar 

  139. M. Burroni, U. Wollina, R. Torricelli, S. Gilardi, G. Dell’Eva, C. Helm, W. Bardey, N. Nami, F. Nobile, M. Ceccarini, A. Pomponi, B. Alessandro, P. Rubegni, Impact of digital dermoscopy analysis on the decision to follow up or to excise a pigmented skin lesion: a multicentre study. Skin Res. Technol. 17, 451–460 (2011)

    Article  Google Scholar 

  140. E.G. Borisova, L.P. Angelova, E.P. Pavlova, Endogenous and exogenous fluorescence skin cancer diagnostics for clinical applications. IEEE J. Sel. Top. Quantum Electron. 20 (2014)

    Google Scholar 

  141. E. Borisova, P. Pavlova, E. Pavlova, P. Troyanova, L. Avramov, Optical biopsy of human skin—a tool for cutaneous tumours’ diagnosis. Int. J. Bioautomation 16, 53–72 (2012)

    Google Scholar 

  142. R. Na, Skin Autofluorescence in Demarcation of Basal Cell Carcinoma. Ph.D Thesis, Department of Dermatology, Copenhagen University (2001)

    Google Scholar 

  143. N. Kollias, G.N. Stamatas, Optical non-invasive approaches to diagnosis of skin diseases. J. Invest. Dermatol. Symp. Proc. 7, 64–75 (2002)

    Article  Google Scholar 

  144. M.J. Koehler, K. König, P. Elsner, R. Bückle, M. Kaatz, In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt. Lett. 31, 2879–2881 (2006)

    Article  Google Scholar 

  145. J.C. Zhang, H.E. Savage, P.G. Sacks, T. Delohery, R.R. Alfano, A. Katz, S.P. Schantz, Innate cellular fluorescence reflects alterations in cellular proliferation. Lasers Surg. Med. 20, 319–331 (1997)

    Article  Google Scholar 

  146. N. Kollias, R. Gillies, R. Anderson, Fluorescence spectra of human skin-preliminary-report. J. Invest. Dermatol. 100, 530 (1993)

    Google Scholar 

  147. R. Bissonnette, H. Zeng, D.I. McLean, W.E. Schreiber, D.L. Roscoe, H. Lui, Psoriatic plaques exhibit red autofluorescence that is due to protoporphyrin IX. J. Invest. Dermatol. 111, 586–591 (1998)

    Article  Google Scholar 

  148. N. Kollias, R. Gillies, M. Moran, I.E. Kochevar, R.R. Anderson, Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J. Invest. Dermatol. 111, 776–780 (1998)

    Article  Google Scholar 

  149. R.E. de Araujo, D.J. Rativa, M.A. Rodrigues, A. Marsden, L.G. Souza Filho, Optical spectroscopy on fungal diagnosis. in New Developments in Biomedical Engineering, ed. by D. Campolo (InTech, Rijeka, 2010)

    Google Scholar 

  150. E. Drakaki, T. Vergou, C. Dessinioti, A.J. Stratigos, C. Salavastru, C. Antoniou, Spectroscopic methods for the photodiagnosis of nonmelanoma skin cancer. J. Biomed. Opt. 18, 061221 (2013)

    Article  Google Scholar 

  151. H. Zeng, D.I. McLean, C.E. MacAulay, B. Palcic, H. Lui, Autofluorescence of basal cell carcinoma. Proc. SPIE 3245, 314–317 (1998)

    Article  Google Scholar 

  152. W. Lohmann, E. Paul, In situ detection of melanomas by fluorescence measurements. Naturwissenschaften 75, 201–202 (1988)

    Article  Google Scholar 

  153. R. Na, I.-M. Stender, H.C. Wulf, Can autofluorescence demarcate basal cell carcinoma from normal skin? A comparison with protoporphyrin IX fluorescence. Acta Derm. Venereol. 81, 246–249 (2001)

    Article  Google Scholar 

  154. M. Panjehpour, C.E. Julius, M.N. Phan, T. Vo-Dinh, S. Overholt, Laser-induced fluorescence spectroscopy for in vivo diagnosis of non-melanoma skin cancers. Lasers Surg. Med. 31, 367–373 (2002)

    Article  Google Scholar 

  155. I. Georgakoudi, B.C. Jacobson, M.G. Müller, E.E. Sheets, K. Badizadegan, D.L. Carr-Locke, C.P. Crum, C.W. Boone, R.R. Dasari, J. Van Dam, M.S. Feld, NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 62, 682–687 (2002)

    Google Scholar 

  156. L. Brancaleon, A.J. Durkin, J.H. Tu, G. Menaker, J.D. Fallon, N. Kollias, In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem. Photobiol. 73, 178–183 (2001)

    Article  Google Scholar 

  157. J. de Leeuw, N. van der Beek, W.D. Neugebauer, P. Bjerring, H.A. Neumann, Fluorescence detection and diagnosis of non-melanoma skin cancer at an early stage. Lasers Surg. Med. 41, 96–103 (2009)

    Article  Google Scholar 

  158. H. Zeng, H. Lui, D.I. McLean, C.E. MacAulay, B. Palcic, Update on fluorescence spectroscopy studies of diseased skin. Proc. SPIE 2671(1996), 196–198 (1996)

    Article  Google Scholar 

  159. K.M. Katika, L. Pilon, Steady-state directional diffuse reflectance and fluorescence of human skin. Appl. Opt. 45, 4174–4183 (2006)

    Article  Google Scholar 

  160. E. Drakaki, E. Kaselouris, M. Makropoulou, A.A. Serafetinides, A. Tsenga, A.J. Stratigos, A.D. Katsambas, C. Antoniou, Laser-induced fluorescence and reflectance spectroscopy for the discrimination of basal cell carcinoma from the surrounding normal skin tissue. Skin Pharmacol Physiol 22, 158–165 (2009)

    Article  Google Scholar 

  161. E. Borisova, P. Troyanova, P. Pavlova, L. Avramov, Diagnostics of pigmented skin tumors based on laser-induced autofluorescence and diffuse reflectance spectroscopy. Quantum Electron. 38, 597 (2008)

    Article  Google Scholar 

  162. U. Wollina, C. Nelskamp, A. Scheibe, D. Faßler, W.-D. Schmidt, Fluorescence-remission sensoring of skin tumours: preliminary results. Skin Res. Technol. 13, 463–471 (2007)

    Article  Google Scholar 

  163. T. Savelieva, A. Ryabova, I. Andreeva, N. Kalyagina, V. Konov, V. Loschenov, Combined spectroscopic method for determining the fluorophore concentration in highly scattered media. Bull. Lebedev Phys. Inst. 38, 334–338 (2011)

    Article  Google Scholar 

  164. E. Carstea, L. Chervase, G. Pavelescu, D. Savastru, A. Forsea, E. Borisova, Combined optical techniques for skin lesion diagnosis: short communication. Optoelectron. Adv. Mater. RapidCommun. 4, 1960–1963 (2010)

    Google Scholar 

  165. L.H. Laiho, S. Pelet, T.M. Hancewicz, P.D. Kaplan, P.T. So, Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra. J. Biomed. Opt. 10, 024016

    Google Scholar 

  166. G. Deka, W.W. Wu, F.J. Kao, In vivo wound healing diagnosis with second harmonic and fluorescence lifetime imaging. J. Biomed. Opt. 18, 061222 (2013)

    Article  Google Scholar 

  167. M.C. Skala, K.M. Riching, D.K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K.W. Eliceiri, P.J. Keely, N. Ramanujam, In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J. Biomed. Opt. 12, 024014 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Gutmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gutmann, E., Erfurth, F., Drewitz, A., Scheibe, A., Meinke, M.C. (2016). UV Fluorescence Detection and Spectroscopy in Chemistry and Life Sciences. In: Kneissl, M., Rass, J. (eds) III-Nitride Ultraviolet Emitters. Springer Series in Materials Science, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-24100-5_13

Download citation

Publish with us

Policies and ethics