Skip to main content

Statistical Concepts and Networks in Causality

  • Chapter
  • First Online:
Unifying Causality and Psychology
  • 1702 Accesses

Abstract

The present chapter focuses on more statistical approaches to causality, including network approaches. It examines test validity models (reflective, formative, mutualistic) and causal models in testing (regularity, counterfactual, process). Test validity involves two major approaches—behavior domain theory and causal theory of measurement.

Statistical approaches to causality are important, but classic experimental approaches to causality need to be supplemented by other means when the classic approaches cannot be applied, for example, due to ethical considerations in setting up certain experimental manipulations. The classical causal model involving experimentation gives validity (and generalizability) cardinal importance, and these are difficult to target in nonexperimental designs but, through their statistical innovations, they are narrowing their limits in these regards. The supplementary statistical approaches in the study of behavioral causality include the potential outcomes model and the directed acyclic graphs (DAGs) model. The former includes a basis in hypothetical outcomes that cannot be ascertained directly, involving the SUTVA (stable unit treatment value assumption), and the latter includes the equivalent of experimental manipulations in its graph surgery/“do” operators (interventions), causal descendants, and counterfactuals. A variation of this latter approach is the ICA (integrated counterfactual approach). Some of the new approaches to statistical mediation analysis include: average causal mediation effect; left-out variables error method; latent growth curve modeling; state-space modeling; and the ignorability-based approach.

Some of the philosophical precursors to statistical and related causality not only concern interventionist/counterfactual accounts but also concepts such as NESS and INUS. The former is defined as necessary element for the sufficiency of a sufficient set and the former as insufficient but necessary components of unnecessary but sufficient causes. These are complex concepts that inform but to not direct statistical approaches to causality in psychology. Aristotle’s concept of four causes still has currency today (material, efficient, formal, final), with efficient causes considered as the equivalent of mechanisms.

Baye’s theorem is an emerging approach in the statistical approach to causality. It is subjective rather than classically frequentist. It deals with concepts such as priors, precision, likelihood, posteriors, and credibility instead of confidence intervals, and it stands in opposition to the classic approach to testing null vs. experimental hypotheses.

Other portions of the chapter deal with FACCDs (Functional Analytic Clinical Case Diagram), ecology, Granger Causality (GC), and networks. The latter is explored in much more detail in subsequent chapters on the brain, in particular. Among the notable aspects of networks discussed in the present chapter include measures of centrality and betweenness.

The chapter also covers epidemiology, with its emphasis on temporality (e.g., predisposing, precipitating, perpetuating factors), and causal webs or pies. The chapter includes new models of statistics and causality, such as the decision theoretic approach, minimal causal models, dynamic causal modeling, and convergent cross-mapping.

The chapter includes a section on posttraumatic stress disorder (PTSD) because it has been related to the concept of networks by McNally et al. (Clinical Psychological Science, 1–14, 2014). For this area of research, the authors contrasted network modeling with the approach of latent variable/constructs. Some of the network concepts applied to the data include: networks of association, concentration, and relative importance. The key measures used also related to centrality and betweenness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders: DSM-IV (4th ed.). Washington, DC: Author.

    Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). Washington, DC: Author.

    Google Scholar 

  • Barlow, D. H., Sauer-Zavala, S., Carl, J. R., Bullis, J. R., & Ellard, K. K. (2014). The nature, diagnosis, and treatment of neuroticism: Back to the future. Clinical Psychological Science, 2, 344–365.

    Article  Google Scholar 

  • Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182.

    Article  PubMed  Google Scholar 

  • Berzuini, C., Dawid, P., & Bernardinelli, L. (2012a). Causality: Statistical perspectives and applications. West Sussex, UK: Wiley.

    Book  Google Scholar 

  • Berzuini, C., Dawid, P., & Bernardinelli, L. (2012b). An overview of statistical causality. In C. Berzuini, P. Dawid, & L. Bernardinelli (Eds.), Causality: Statistical perspectives and applications (pp. 1–4). West Sussex, UK: Wiley.

    Chapter  Google Scholar 

  • Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

    Book  Google Scholar 

  • Borsboom, D., & Cramer, A. O. J. (2014). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121.

    Article  Google Scholar 

  • Bracken, M. B. (2013). Risk, chance, and causation: Investigating the origins and treatment of disease. New Haven, CT: Yale University Press.

    Book  Google Scholar 

  • Campbell, D. T. (1957). Factors relevant to the validity of experiments in social settings. Psychological Bulletin, 54, 297–312.

    Article  PubMed  Google Scholar 

  • Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs for research on teaching. In N. L. Gage (Ed.), Handbook of research methods for studying daily life (pp. 171–246). Chicago: Rand McNally.

    Google Scholar 

  • Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., et al. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2, 119–137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., & Cao, Y. (2012). Epidemiological context and concerns. In P. Kennedy (Ed.), The Oxford handbook of rehabilitation psychology (pp. 88–95). New York: Oxford University Press.

    Google Scholar 

  • Ciarrochi, J., Chan, A. Y. C., & Bajgar, J. (2001). Measuring emotional intelligence in adolescents. Personality and Individual Differences, 31, 1105–1119.

    Article  Google Scholar 

  • Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis issues for field settings. Chicago: Rand McNally.

    Google Scholar 

  • Dawid, P. (2012). The decision-theoretic approach to causal inference. In C. Berzuini, P. Dawid, & L. Bernardinelli (Eds.), Causality: Statistical perspectives and applications (pp. 25–42). West Sussex, UK: Wiley.

    Chapter  Google Scholar 

  • De Ridder, D., Vanneste, S., & Freeman, W. (2014). The Bayesian brain: Phantom percepts resolve sensory uncertainty. Neuroscience and Biobehavioral Reviews, 44, 4–15.

    Article  PubMed  Google Scholar 

  • Detto, M., Molini, A., Katul, G., Stoy, P., Palmroth, S., & Baldocchi, D. (2012). Causality and persistence in ecological systems: A nonparametric spectral Granger causality approach. The American Naturalist, 179, 524–535.

    Article  PubMed  Google Scholar 

  • Digangi, J., Guffanti, G., McLaughlin, K. A., & Koenen, K. C. (2013). Considering trauma exposure in the context of genetics studies of posttraumatic stress disorder: A systematic review. Biology of Mood and Anxiety Disorders, 3, 1–12.

    Article  Google Scholar 

  • Donofrino, B., Class, Q., Lahey, B., & Larsson, H. (2014). Testing the developmental origins of health and disease hypothesis for psychopathology using family-based, quasi-experimental designs. Child Development Perspectives, 8, 151–157.

    Article  Google Scholar 

  • Duncan, G. J., & Magnuson, K. (2012). Socioeconomic status and cognitive functioning: Moving from correlation to causation. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 377–386.

    PubMed  Google Scholar 

  • Ehlers, A., & Clark, D. M. (2000). A cognitive model of posttraumatic stress disorder. Behavior Research and Therapy, 38, 319–345.

    Article  Google Scholar 

  • Emsley, R., & Dunn, G. (2012). Evaluation of potential mediators in randomized trials of complex interventions (psychotherapies). In C. Berzuini, P. Dawid, & L. Bernardinelli (Eds.), Causality: Statistical perspectives and applications (pp. 290–326). West Sussex, UK: Wiley.

    Chapter  Google Scholar 

  • Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualization of relationships in psychometric data. Journal of Statistical Software, 48, 1018.

    Article  Google Scholar 

  • First, M., Spitzer, R., Gibbon, M., & Williams, J. (2002). Structural clinical interview for DSM-IV-TR, Research Version, Nonpatient Edition. New York: New York State Psychiatric Institute, Biometric Research.

    Google Scholar 

  • Fisher, R. A. (1935). Statistical methods for research workers. Edinburgh, UK: Oliver and Boyd.

    Google Scholar 

  • Frangakis, C. E., & Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics, 58, 21–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston, K. (2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13, 293–301.

    Article  PubMed  Google Scholar 

  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127–138.

    Article  PubMed  Google Scholar 

  • Friston, K. J., Bastos, A. M., Oswal, A., van Wijk, B., Richter, C., & Litvak, V. (2014). Granger causality revisited. NeuroImage, 101, 796–808.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston, K., Moran, R., & Seth, A. K. (2013). Analysing connectivity with Granger causality and dynamic causal modeling. Current Opinion in Neurobiology, 23, 172–178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelman, A. (2011). Causality and statistical learning. American Journal of Sociology, 117, 955–966.

    Article  Google Scholar 

  • Gerstman, B. B. (2013). Epidemiology kept simple: An introduction to traditional and modern epidemiology. Oxford, UK: Wiley-Blackwell.

    Google Scholar 

  • Geuze, E., van Wingen, G. A., van Zuiden, M., Rademaker, A. R., Vermetten, E., Kavelaars, A., et al. (2012). Glucocorticoid receptor number predicts increase in amygdala activity after severe stress. Psychoneuroendocrinology, 37, 1837–1844.

    Article  PubMed  Google Scholar 

  • Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, Bayesian learning mechanisms, and the theory. Psychological Bulletin, 138, 1085–1108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 37, 424–438.

    Article  Google Scholar 

  • Granger, C. W. J. (1988). Some recent developments in the concept of causality. Journal of Econometrics, 39, 199–211.

    Article  Google Scholar 

  • Greenland, S. (2012). Causal inference as a prediction problem: Assumptions, identification and evidence synthesis. In C. Berzuini, P. Dawid, & L. Bernardinelli (Eds.), Causality: Statistical perspectives and applications (pp. 43–58). West Sussex, UK: Wiley.

    Chapter  Google Scholar 

  • Haynes, S. N. (1992). Models of causality in psychopathology: Toward synthetic, dynamic and nonlinear models of causality in psychopathology. Des Moines, IA: Allyn & Bacon.

    Google Scholar 

  • Haynes, S. N., O’Brien, W. H., Kaholokula, J. K., & Witteman, C. (2012). Concepts of causality in psychopathology: Applications in clinical assessment, clinical case formulation and functional analysis. Journal of Unified Psychotherapy and Clinical Science, 1, 87–103.

    Google Scholar 

  • Haynes, S. N., O’Brien, W. H., & Kaholokula, J. K. (2011). Behavioral assessment and case formulation. Hoboken, NJ: Wiley.

    Google Scholar 

  • Haynes, S. N., Yoshioka, D., Kloezeman, K., & Bello, I. (2009). Clinical applications of behavioral assessment: Identifying and explaining behavior problems in clinical assessment. In J. Butcher (Ed.), Oxford handbook of clinical assessment (pp. 226–249). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Hill, A. B. (1965). The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine, 58, 295–300.

    PubMed  PubMed Central  Google Scholar 

  • Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81, 945–970.

    Article  Google Scholar 

  • Holland, P. W. (1988). Causal inference, path analysis, and recursive structural equation models. Sociological Methodology, 18, 449–484.

    Article  Google Scholar 

  • Hong, R. Y., & Cheung, M. W.-L. (2015). The structure of cognitive vulnerabilities to depression and anxiety: Evidence for a common core etiologic process based on a meta-analytic review. Clinical Psychological Science, 3, 892–912.

    Google Scholar 

  • Hu, S., & Liang, H. (2012). Causality analysis of neural connectivity: New tool and limitations of spectral Granger causality. Neurocomputing, 76, 44–47.

    Article  Google Scholar 

  • Imai, K., Jo, B., & Stuart, E. A. (2011). Commentary: Using potential outcomes to understand causal mediation analysis. Multivariate Behavioral Research, 46, 861–873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2014). Comment on Pearl: Practical implications of theoretical results for causal mediation analysis. Psychological Methods, 19, 482–487.

    Article  PubMed  Google Scholar 

  • Imai, K., Keele, L., & Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods, 15, 309–334.

    Article  PubMed  Google Scholar 

  • Imai, K., Tingley, D., & Yamamoto, T. (2013). Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society, 176, 5–51.

    Article  Google Scholar 

  • Jaffee, S. R., Strait, L. B., & Odgers, C. L. (2011). From correlates to causes: Can quasi-experimental studies and statistical innovations bring us closer to identifying the causes of antisocial behavior? Psychological Bulletin, 138, 272–295.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jo, B. (2008). Causal inference in randomized experiments with meditational processes. Psychological Methods, 13, 314–336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendler, K. S. (2011). Causal thinking in psychiatry: A genetic and manipulationist perspective. In P. E. Shrout, K. M. Keyes, & K. Ornstein (Eds.), Causality and psychopathology: Finding the determinants of disorders and their cures (pp. 66–78). New York: Oxford University Press.

    Google Scholar 

  • Klengel, T., Mehta, D., Anacker, C., Rex-Haffner, M., Pruessner, J. C., Pariante, C. M., et al. (2013). Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nature Neuroscience, 16, 33–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landolt, M. A., Ystrom, E., Stene-Larsen, K., Holmstrøm, H., & Vollrath, M. E. (2013). Exploring causal pathways of child behavior and maternal mental health in families with a child with congenital heart disease: A longitudinal study. Psychological Medicine, 44, 3421–3433.

    Article  PubMed  Google Scholar 

  • Lane, S. P., & Sher, K. J. (2015). Limits of current approaches to diagnosis severity based on criterion counts: An example with DSM-5 alcohol use disorder. Clinical Psychological Science, 3, 819–835.

    Google Scholar 

  • Lehrner, A., & Yehuda, R. (2014). Biomarkers of PTSD: Military applications and considerations. European Journal of Psychotraumatology, 5, 1–11.

    Article  Google Scholar 

  • Li, H., Wang, L., Shi, Z., Zhang, Y., Wu, K., & Liu, P. (2010). Diagnostic utility of the PTSD Checklist in detecting PTSD in Chinese earthquake victims. Psychological Reports, 107, 733–739.

    Article  PubMed  Google Scholar 

  • Mackie, J. L. (1965). Causes and conditions. American Philosophical Quarterly, 4, 245–264.

    Google Scholar 

  • Mackie, J. L. (1974). Cement of the universe: A study of causation. Oxford, UK: Oxford University Press.

    Google Scholar 

  • MacKinnon, D. P., Cox, M. G., Miocevic, M., & Kisbu-Sakarya, Y. (2012, March). Methods to assess confounder bias applied to an anabolic steroid prevention program. Paper presented at the Frontiers in Causal Inference Conference, Harvard University, Cambridge, MA.

    Google Scholar 

  • MacKinnon, D. P., & Pirlott, A. G. (2015). Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis. Personality and Social Psychology Review, 19, 30–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Markus, K. A., & Borsboom, D. (2013). Frontiers of test validity theory: Measurement, causation, and meaning. New York: Routledge.

    Google Scholar 

  • Marshall, S. L., Parker, P. D., Ciarrochi, J., & Heaven, P. C. L. (2013). Is self-esteem a cause of consequence of social support? A 4-year longitudinal study. Child Development, 85, 1275–1291.

    Article  PubMed  Google Scholar 

  • McLanahan, S., Tach, L., & Schneider, D. (2013). The causal effects of father absence. Annual Review of Sociology, 39, 399–427.

    Article  Google Scholar 

  • McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems: A network approach to posttraumatic stress disorder. Clinical Psychological Science, 3, 836–849.

    Google Scholar 

  • Muthén, B., & Asparouhov, T. (2012). Bayesian SEM: A more flexible representation of substantive theory. Psychological Methods, 17, 313–335.

    Article  PubMed  Google Scholar 

  • Pearl, J. (2000). Causality: Models, reasoning, and inference. New York: Cambridge University Press.

    Google Scholar 

  • Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Pearl, J. (2014a). Interpretation and identification of causal mediation. Psychological Methods, 19, 459–481.

    Article  PubMed  Google Scholar 

  • Pearl, J. (2014b). Reply to commentary by Imai, Keele, Tingley, and Yamamoto concerning causal mediation analysis. Psychological Methods, 19, 488–492.

    Article  PubMed  Google Scholar 

  • Pitman, R. K., Rasmusson, A. M., Koenen, K. C., Shin, L. M., Orr, S. P., Gilbertson, M. W., et al. (2012). Biological studies of post-traumatic stress disorder. Nature Reviews Neuroscience, 13, 769–787.

    Article  PubMed  Google Scholar 

  • Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. Annual Review of Psychology, 66, 825–852.

    Article  PubMed  Google Scholar 

  • Rabins, P. (2013). The why of things: Causality in science, medicine, and life. New York: Columbia University Press.

    Book  Google Scholar 

  • Raerinne, J. (2011). Causal and mechanistic explanations in ecology. Acta Briotheoretica, 59, 251–271.

    Article  Google Scholar 

  • Robins, J. M., Hernán, M. A., & Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 11, 550–560.

    Article  PubMed  Google Scholar 

  • Robins, J. M., & Richardson, T. S. (2011). Alternative graphical causal models and the identification of direct effects. In P. E. Shrout, K. M. Keyes, & K. Ornstein (Eds.), Causality and psychopathology: Finding the determinants of disorders and their cures (pp. 103–158). New York: Oxford University Press.

    Google Scholar 

  • Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39, 33–38.

    Google Scholar 

  • Rosenberg, M. (1979). Conceiving the self. New York: Basic Books.

    Google Scholar 

  • Rothman, K. J. (1976). Reviews and commentary: Causes. American Journal of Epidemiology, 104, 587–592.

    PubMed  Google Scholar 

  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and non-randomized studies. Journal of Educational Psychology, 66, 688–701.

    Article  Google Scholar 

  • Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Annals of Statistics, 6, 34–58.

    Article  Google Scholar 

  • Rubin, D. B. (1980). Discussion of “Randomization analysis of experimental data in the Fisher randomization test”, by D. Basu. Journal of the American Statistical Association, 75, 591–593.

    Google Scholar 

  • Rubin, D. B. (1990). Formal models of statistical inference for causal effects. Journal of Statistical Planning and Inference, 25, 279–292.

    Article  Google Scholar 

  • Rubin, D. B. (2004a). Direct and indirect causal effects via potential outcomes. Scandinavian Journal of Statistics, 31, 161–170.

    Article  Google Scholar 

  • Rubin, D. B. (2004b). Teaching statistical inference for causal effects in experiments and observational studies. Journal of Educational and Behavioral Statistics, 29, 343–367.

    Article  Google Scholar 

  • Rubin, D. B. (2010). Reflections stimulated by the comments of Shadish (2010) and West and Thoemmes (2010). Psychological Methods, 15, 38–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin, D. B., & Thomas, N. (1992). Characterizing the effect of matching using linear propensity score methods with normal covariates. Biometrika, 79, 797–809.

    Article  Google Scholar 

  • Rutter, M. (2012). “Natural experiments” as a means of testing causal inferences. In C. Berzuini, P. Dawid, & L. Bernardinelli (Eds.), Causality: Statistical perspectives and applications (pp. 253–272). West Sussex, UK: Wiley.

    Chapter  Google Scholar 

  • Sadeh, N., Spielberg, J. M., Warren, S. L., Miller, G. A., & Heller, W. (2014). Aberrant neural connectivity during emotional processing associated with posttraumatic stress. Clinical Psychological Science, 2, 748–755.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sauce, B., & Matzel, L. D. (2013). The causes of variation in learning and behavior: Why individual differences matter. Frontiers in Psychology, 4, 395. doi:10.3389/fpsyg.2013.00395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt, U., Faltwasser, S. F., & Wotjak, C. T. (2013). Biomarkers in posttraumatic stress disorder: Overview and implications for future research. Disease Markers, 35, 43–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz, S., Gatto, N. M., & Campbell, U. B. (2011). What would have been is not what would be: Counterfactuals of the past and potential outcomes of the future. In P. E. Shrout, K. M. Keyes, & K. Ornstein (Eds.), Causality and psychopathology: Finding the determinants of disorders and their cures (pp. 25–46). New York: Oxford University Press.

    Google Scholar 

  • Scott, J. C., Matt, G. E., Wrocklage, K. M., Crnich, C., Jordan, J., Southwick, S. M., et al. (2015). A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychological Bulletin, 141, 105–140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental design for generalized casual inference. Boston: Houghton Mifflin.

    Google Scholar 

  • Shadish, W. R., & Sullivan, K. J. (2012). Theories of causation in psychological science. In H. Copper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol 1: Foundations, planning, measures, and psychometrics (pp. 23–52). Washington: American Psychological Association.

    Chapter  Google Scholar 

  • Shpitser, I. (2012). Structural equations, graphs, and interventions. In C. Berzuini, P. Dawid, & L. Bernardinelli (Eds.), Causality: Statistical perspectives and applications (pp. 15–24). West Sussex, UK: Wiley.

    Chapter  Google Scholar 

  • Shpitser, I., VanderWeele, T., & Robins, J. M. (2010). On the validity of covariate adjustment for estimating causal effects. Proceedings of the 26th Conference of Uncertainty and Artificial Intelligence (pp. 527–536). Corvallis, WA: AUAI Press.

    Google Scholar 

  • Shrout, P. E. (2011). Integrating causal analysis into psychopathology research. In P. E. Shrout, K. M. Keyes, & K. Ornstein (Eds.), Causality and psychopathology: Finding the determinants of disorders and their cures (pp. 3–24). New York: Oxford University Press.

    Google Scholar 

  • Shrout, P. E., Keyes, K. M., & Ornstein, K. (Eds.). (2011). Causality and psychopathology: Finding the determinants of disorders and their cures. New York: Oxford University Press.

    Google Scholar 

  • Skelton, K., Ressler, K. J., Norrholm, S. D., Jovanovic, T., & Bradley-Davino, B. (2012). PTSD and gene variants: New pathways and new thinking. Neuropharmacology, 62, 628–637.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobel, M. E. (2008). Identification of causal parameters in randomized studies with mediating variables. Journal of Educational and Behavioral Statistics, 33, 230–251.

    Article  Google Scholar 

  • Sugihara, G., May, R., Ye, H., Hsieh, C.-H., Deyle, E., Fogarty, M., et al. (2012). Detecting causality in complex ecosystem. Science, 338, 496–500.

    Article  PubMed  Google Scholar 

  • Tian, J., & Pearl, J. (2000). Probabilities of causation: Bounds and identification. In C. Boutilier & M. Goldszmidt (Eds.), Proceedings of the conference on uncertainty in artificial intelligence (pp. 589–598). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Van Bockstaele, B., Verschuere, B., Tibboel, H., De Houwer, J., Crombez, G., & Koster, E. H. W. (2013). A review of current evidence for the causal impact of attentional bias on fear and anxiety. Psychological Bulletin, 140, 682–721.

    Article  PubMed  Google Scholar 

  • Van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wichertz, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113, 842–861.

    Article  PubMed  Google Scholar 

  • van der Schoot, R., Denissen, J., Neyer, F. J., Kaplan, D., Asendorpf, J. B., & van Aken, M. A. G. (2013). A gentle introduction to Bayesian analysis: Applications to developmental research. Child Development, 85, 842–860.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Zuiden, M., Geuze, E., Willemen, H. L. D. M., Vermetten, E., Maas, M., Amarouchi, K., et al. (2012). Glucocorticoid receptor pathway components predict posttraumatic stress disorder symptom development: A prospective study. Biological Psychiatry, 71, 309–316.

    Article  PubMed  Google Scholar 

  • van Zuiden, M., Geuze, E., Willemen, H. L. D. M., Vermetten, E., Maas, M., Heijnen, C. J., et al. (2011). Pre-existing high glucocorticoid receptor number predicting development of posttraumatic stress symptoms after military deployment. American Journal of Psychiatry, 168, 89–96.

    Article  PubMed  Google Scholar 

  • van Zuiden, M., Heijnen, C. J., Maas, M., Amarouchi, K., Vermetten, E., Geuze, E., et al. (2012). Glucocorticoid sensitivity of leukocytes predicts PTSD, depressive and fatigue symptoms after military deployment: A prospective study. Psychoneuroendocrinology, 37, 1822–1836.

    Article  PubMed  Google Scholar 

  • VanderWeele, T. J. (2010). Bias formulas for sensitivity analysis for direct and indirect effects. Epidemiology, 21(540), 551.

    Google Scholar 

  • von Eye, A., & Wiedermann, W. (2015). Manifest variable Granger causality models for developmental research: A taxonomy. Applied Developmental Science, 19, 183–195.

    Google Scholar 

  • von Eye, A., Wiedermann, W., & Mun, E.-Y. (2013). Granger causality – Statistical analysis under a configural perspective. Integrative Psychological and Behavioral Science, 48, 79–99.

    Google Scholar 

  • Weathers, F. W., Litz, B. T., Herman, D. S., Huska, J. A., & Keane, T. M. (1993, October). The PTSD Checklist (PCL): Reliability, validity, and diagnostic utility. Paper presented at the meeting of the International Society for Traumatic Stress Studies, San Antonio, TX.

    Google Scholar 

  • Wigman, J. T. W., van Os, J., Borsboom, D., Wardenaar, K. J., Epskamp, S., Klippel, A., et al. (2015). Exploring the underlying structure of mental disorders: Cross-diagnostic differences and similarities from a network perspective using both a top-down and a bottom-up approach. Psychological Medicine. doi:10.1017/S0033291715000331.

    PubMed  Google Scholar 

  • Woodward, J. (2000). Explanation and invariance in the special sciences. British Journal of Philosophy, 51, 197–254.

    Article  Google Scholar 

  • Woodward, J. (2001). Law and explanation in biology: Invariance is the kind of stability that matters. Philosophical Science, 68, 1–20.

    Article  Google Scholar 

  • Woodward, J. (2003). Making things happen: A theory of causal explanation. New York: Oxford University Press.

    Google Scholar 

  • Wright, R. W. (1988). Causation, responsibility, risk, probability, naked statistics, and proof: Pruning the bramble bush by clarifying the concepts. Iowa Law Review, 73, 1001–1077.

    Google Scholar 

  • Wu, G., Feder, A., Cohen, H., Kim, J. J., Calderon, S., Charney, D. S., et al. (2013). Understanding resilience. Frontiers in Behavioral Neuroscience, 7, 10. doi:10.3389/fnbeh.2013.00010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yehuda, R. (2002). Current status of cortisol findings in post-traumatic stress disorder. Psychiatric Clinics of North America, 25, 341–368.

    Article  PubMed  Google Scholar 

  • Young, G. (2014). Malingering, feigning, and response bias in psychiatric/psychological injury: Implications for practice and court. Dordrecht, Netherlands: Springer Science + Business Media.

    Book  Google Scholar 

  • Zoladz, P. R., & Diamond, D. M. (2013). Current status on behavioral and biological markers of PTSD: A search for clarity in a conflicting literature. Neuroscience and Biobehavioral Reviews, 37, 860–895.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Young, G. (2016). Statistical Concepts and Networks in Causality. In: Unifying Causality and Psychology. Springer, Cham. https://doi.org/10.1007/978-3-319-24094-7_6

Download citation

Publish with us

Policies and ethics