Skip to main content

Causal Learning: Understanding the World

  • Chapter
  • First Online:
Unifying Causality and Psychology

Abstract

This chapter focuses heavily on empirical research on whether causal learning is evident very early in life as an associative or as a primitive inferential, abstract fashion. The current predominant view is that it is Bayesian, statistical, probabilistic, computational, and so on, and not governed by either innate preformed abstraction-ready modules or associative, nonrepresentational mechanisms. The Bayesian point of view in this chapter is complemented by the interventionist and causal mapping one. In working in this area, the traditional Piagetian perspective on mental schemas still appears useful, and it is much cited. However, others dismiss its utility. In my compromise position, I show how a modified, integrative Neo-Piagetian view can be informative.

The associative point of view is promoted by theorists who argue that too much is read into studies of very young infants in terms of their early abstractive abilities. Rather than being little logicians, young children are intuitive statisticians. A view that accommodates to the opposition of the fast minimal nativist and slow constructivist points of view on early causal learning concerns the middle-of-the-road one of rational constructivism.

Early cognitive structures in the associationist camp have been referred to as intuitive and nontheoretical, with motor resonance involved. Yet the field also encounters contrary concepts, such as infants possessing an abstract framework and the blessing of abstraction. In a nativist-friendly approach, neonates might even understand physical causation/Michottian launching events. Yet, in the contrary view, only older children might develop a full theory of mind, or a “theory” theory. Aside from innate factors, the chapter refers to natural pedagogy, and observational causal learning/interventionist, causality-informative behavior. For some of the intriguing methods used in the research, they include “blicket” detectors, sticky mittens, everted rabbits, and win-stay/lose-shift strategies. Other concepts in the chapter include causal, higher-order relational cognition and the quantum probability model of causal reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez, A. L., & Booth, A. E. (2015). Preschoolers prefer to learn causal information. Frontiers in Psychology, 6, 60. doi:10.3389/fpsyg.2015.00060.

    Article  PubMed  PubMed Central  Google Scholar 

  • American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR (4th ed., text rev.). Washington, DC: Author.

    Google Scholar 

  • Apperly, I. A., & Butterfill, S. A. (2009). Do humans have two systems to track beliefs and belief-like states? Psychological Review, 116, 953–970.

    Article  PubMed  Google Scholar 

  • Atance, C. M., Metcalf, J. L., Martin-Ordas, G., & Walker, C. L. (2014). Young children’s causal explanations are biased by post-action associative information. Developmental Psychology, 50, 2675–2685.

    Article  PubMed  Google Scholar 

  • Baillargeon, R., Li, J., Gertner, Y., & Wu, D. (2010). How do infants reason about physical events? In U. Goswami (Ed.), Handbook of childhood cognitive development (2nd ed., pp. 11–48). Oxford, UK: Blackwell.

    Google Scholar 

  • Banerjee, K., & Bloom, P. (2015). “Everything happens for a reason”: Children’s beliefs about purpose in life events. Child Development, 86, 503–518.

    Article  PubMed  Google Scholar 

  • Barrett, T., Davis, E. F., & Needham, A. (2007). Learning to use a tool in infancy. Developmental Psychology, 43, 352–368.

    Article  PubMed  Google Scholar 

  • Bechlivanidis, C., & Lagnado, D. A. (2013). Does the “why” tell us the “when”? Psychological Science, 20, 1221–1228.

    Google Scholar 

  • Beck, S. R., Riggs, K. J., & Burns, P. (2011). Multiple developments in counterfactual thinking. In C. Hoerl, T. McCormack, & S. R. Beck (Eds.), Understanding counterfactual, understanding causation: Issues in philosophy and psychology (pp. 110–122). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Böhm, G., & Pfister, H.-R. (2015). How people explain their own and others’ behavior: A theory of lay causal explanation. Frontiers in Psychology, 6, 139. doi:10.3389/fpsyg.2015.00139.

    PubMed  PubMed Central  Google Scholar 

  • Bonawitz, E., Denison, S., Griffiths, T. L., & Gopnik, A. (2014). Probabilistic models, learning algorithms, and response variability: Sampling in cognitive development. Trends in Cognitive Sciences, 18, 497–500.

    Article  PubMed  Google Scholar 

  • Booth, A. E. (2014). Effects of causal information on early world learning: Efficiency and longevity. Cognitive Development, 33, 99–107.

    Article  Google Scholar 

  • Boyd, R., Richerson, P. J., & Henrich, J. (2011). The cultural niche: Why social learning is essential for human adaptation. Proceedings of the National Academy of Sciences, USA, 108, 10918–10925.

    Google Scholar 

  • Brandone, A. C. (2015). Infants’ social and motor experience and the emerging understanding of intentional actions. Developmental Psychology, 51, 512–523.

    Article  PubMed  Google Scholar 

  • Brandone, A., & Wellman, H. M. (2009). You can’t always get what you want: Infants understand failed goal-directed actions. Psychological Science, 20, 85–91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchsbaum, D., Seiver, E., Beidgers, S., & Gopnik, A. (2013). Learning about causes from people and about people as causes: Probabilistic models and social causal reasoning. In F. Xu & T. Kushnir (Eds.), Advances in child development and behavior: Rational constructivism in cognitive development (Vol. 43, pp. 125–160). Waltham, MA: Academic.

    Chapter  Google Scholar 

  • Cacchione, T., Schaub, S., & Rakoczy, H. (2013). Fourteen-month-old infants infer the continuous identity of objects on the basis of nonvisible causal properties. Developmental Psychology, 49, 1325–1329.

    Article  PubMed  Google Scholar 

  • Carey, S. (2009). The origins of concepts. New York: Oxford University Press.

    Book  Google Scholar 

  • Carlson, S. M., Koenig, M. A., & Harms, M. B. (2013). Theory of mind. Wiley Interdisciplinary Reviews: Cognitive Science, 4, 391–402.

    PubMed  Google Scholar 

  • Cesana-Arlotti, N., Téglás, E., & Bonatti, L. L. (2013). The probable and the possible at 12 months: Intuitive reasoning about the uncertain future. In F. Xu & T. Kushnir (Eds.), Advances in child development and behavior: Rational constructivism in cognitive development (Vol. 43, pp. 1–25). Waltham, MA: Academic.

    Chapter  Google Scholar 

  • Chater, N., & Oaksford, M. (2013). Programs as causal models: Speculations on mental programs and mental representation. Cognitive Science, 37, 1171–1191.

    Article  PubMed  Google Scholar 

  • Chen, M. L., & Waxman, S. R. (2013). “Shall we blick?”: Novel words highlight actors’ underlying intentions for 14-month-old infants. Developmental Psychology, 49, 426–431.

    Article  PubMed  Google Scholar 

  • Cheng, P. (1997). From covariation to causation: A causal power theory. Psychological Review, 104, 367–405.

    Article  Google Scholar 

  • Cohen, L., Chaput, H., & Cashon, C. (2002). A constructivist model of infant cognition. Cognitive Development, 17, 1323–1343.

    Article  Google Scholar 

  • Critcher, C. R., Dunning, D., & Rom, S. C. (2015). Causal trait theories: A new form of person knowledge that explains egocentric pattern projection. Journal of Personality and Social Psychology, 108, 400–416.

    Article  PubMed  Google Scholar 

  • Csibra, G., Bíró, S., Koós, O., & Gergely, G. (2003). One-year-old infants use teleological representations of actions productively. Cognitive Science, 27, 111–133.

    Article  Google Scholar 

  • Csibra, G., & Gergely, G. (2005). Social learning and social cognition: The case for pedagogy. In Y. Munakata & M. H. Johnson (Eds.), Process of change in brain and cognitive development. Attention and Performance XXI (pp. 249–274). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Denison, S., Bonawitz, E., Gopnik, A., & Griffiths, T. L. (2014). Rational variability in children’s causal inferences: The sampling hypothesis. Cognition, 126, 285–300.

    Article  Google Scholar 

  • Denison, S., Reed, C., & Xu, F. (2013). The emergence of probabilistic reasoning in very young infants: Evidence from 4.5- and 6-month-old infants. Developmental Psychology, 49, 243–249.

    Article  PubMed  Google Scholar 

  • Denison, S., Trikutam, P., & Xu, F. (2014). Probability versus representativeness in infancy: Can infants use naïve physics to adjust population base rates in probabilistic inference? Developmental Review, 50, 2009–2019.

    Google Scholar 

  • Denison, S., & Xu, F. (2010a). Integrating physical constraints in statistical inference by 11-month-old infants. Cognitive Science, 34, 885–908.

    Article  PubMed  Google Scholar 

  • Denison, S., & Xu, F. (2010b). Twelve- to 14-month-old infants can predict single-event probability with large set sizes. Developmental Science, 13, 798–803.

    Article  PubMed  Google Scholar 

  • Denison, S., & Xu, F. (2013). Probabilistic inference in human infants. In F. Xu & T. Kushnir (Eds.), Advances in child development and behavior: Rational constructivism in cognitive development (Vol. 43, pp. 27–58). Waltham, MA: Academic.

    Chapter  Google Scholar 

  • Desrochers, S., Ricard, M., & Décarie, T. G. (1995). Understanding causality in infancy: A reassessment of Piaget’s theory. Cahiers de Psychologie Cognitive, 14, 255268.

    Google Scholar 

  • Dewar, K. M., & Xu, F. (2010). Induction, overhypothesis, and the origin of abstract knowledge. Psychological Science, 21, 1871–1877.

    Article  PubMed  Google Scholar 

  • Evans, J., & Stanovich, K. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8, 223–241.

    Article  PubMed  Google Scholar 

  • Fernando, C. (2013). From blickets to synapses: Inferring temporal causal networks by observation. Cognitive Science, 37, 1426–1470.

    Article  PubMed  Google Scholar 

  • Flores, A., Cobos, P. L., López, F. J., & Godoy, A. (2014). The influence of causal connections between symptoms on the diagnosis of mental disorders: Evidence from online and offline measures. Journal of Experimental Psychology: Applied, 20, 175–190.

    PubMed  Google Scholar 

  • Gergely, G., Bekkering, H., & Kiraly, I. (2002). Rational imitation in preverbal infants. Nature, 415, 755. doi:10.1038/415755a.

    Article  PubMed  Google Scholar 

  • Gergely, G., & Csibra, G. (2003). Teleological reasoning about actions: The Naïve theory of rational actions. Trends in Cognitive Sciences, 7, 287–292.

    Article  PubMed  Google Scholar 

  • Gergely, G., & Jacob, P. (2013). Reasoning about instrumental and communicative agency in human infancy. In F. Xu & T. Kushnir (Eds.), Advances in child development and behavior: Rational constructivism in cognitive development (Vol. 43, pp. 59–94). Waltham, MA: Academic.

    Chapter  Google Scholar 

  • Gerken, L. (2006). Decisions, decisions, decisions: Infant language learning when multiple generalizations are possible. Cognition, 98, B67–B74.

    Article  PubMed  Google Scholar 

  • Gerken, L. (2010). Infants use rational decision criteria for choosing among models of their input. Cognition, 115, 362–366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerson, S., & Woodward, A. L. (2010). Building intentional action knowledge with one’s hands. In S. P. Johnson (Ed.), Neo-constructivism (pp. 295–313). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Gerson, S. A., & Woodward, A. L. (2012). A claw is like my hand: Comparison supports goal analysis in infants. Cognition, 122, 181–192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert, E. A., Tenney, E. R., Holland, C. R., & Spellman, B. A. (2015). Counterfactuals, control, and causation: Why knowledgeable people get blamed more. Personality and Social Psychology Bulletin. doi:10.1177/0146167215572137.

    PubMed  Google Scholar 

  • Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learning a theory of causality. Psychological Review, 118, 110–119.

    Article  PubMed  Google Scholar 

  • Gopnik, A., & Bonawitz, E. (2014). Bayesian models of child development. Cognitive Science, 6, 75–86.

    PubMed  Google Scholar 

  • Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., & Danks, D. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 3–32.

    Article  PubMed  Google Scholar 

  • Gopnik, A., & Schulz, L. (2007). Introduction. In A. Gopnik & L. Schulz (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 1–15). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Gopnik, A., Sobel, D. M., Schulz, L., & Glymour, C. (2001). Causal learning mechanisms in very young children: Two-, three-, and four-year-olds infer causal relations from patterns of variation and covariation. Developmental Psychology, 37, 620–629.

    Article  PubMed  Google Scholar 

  • Gopnik, A., & Wellman, H. M. (1992). Why the child’s theory of mind really is a theory. Mind & Language, 7, 145–171.

    Article  Google Scholar 

  • Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, Bayesian learning mechanisms, and the theory. Psychological Bulletin, 138, 1085–1108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths, T. L., Sobel, D. M., Tenenbaum, J. B., & Gopnik, A. (2011). Bayes and blickets: Effects of knowledge on causal induction in children and adults. Cognitive Science, 35, 1407–1455.

    Article  PubMed  PubMed Central  Google Scholar 

  • Güss, C. D., & Robinson, B. (2014). Predicted causality in decision making: The role of culture. Frontiers in Psychology, 5, 479. doi:10.3389/fpsyg.2014.00739.

    PubMed  PubMed Central  Google Scholar 

  • Gweon, H., & Schulz, L. (2011). 16-month-olds rationally infer causes of failed actions. Science, 332, 1524. doi:10.1126/science.1204493.

    Article  PubMed  Google Scholar 

  • Gweon, H., Tenenbaum, J. B., & Schulz, L. E. (2010). Infants consider both the sample and the sampling process in inductive generalization. Proceedings of the National Academy of Sciences, USA, 107, 9066–9071.

    Google Scholar 

  • Haidle, M. N. (2014). Building a bridge – An archeologist’s perspective on the evolution of causal cognition. Frontiers in Psychology, 5, 1472. doi:10.3389/fpsyg.2014.01472.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamlin, J. K. (2013). Moral judgment and action in preverbal infants and toddlers: Evidence for an innate moral core. Current Directions in Psychological Science, 23, 186–193.

    Article  Google Scholar 

  • Hamlin, J. K., Ullman, T., Tenenbaum, J. B., Goodman, N., & Baker, C. (2013). The mentalistic basis of core social cognition: Experiments in preverbal infants and a computational model. Developmental Science, 16, 209–226.

    Article  PubMed Central  Google Scholar 

  • Hamlin, J. K., & Wynn, K. (2011). Young infants prefer prosocial to antisocial others. Cognitive Development, 26, 30–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heyes, C., & Frith, U. (2012). New thinking: The evolution of human cognition. Philosophical Transactions of the Royal Society B: Biological Science, 367, 2091–2096.

    Article  Google Scholar 

  • Hoerl, C., McCormack, T., & Beck, S. R. (2011). Understanding counterfactual, understanding causation: Issues in philosophy and psychology. New York: Oxford University Press.

    Book  Google Scholar 

  • Hohenberger, A., Elsabbagh, M., Serres, J., de Schoenen, S., Karmiloff-Smith, A., & Ascherslenben, G. (2013). Understanding goal-directed human actions and physical causality: The role of mother-infant interaction. Infant Behavior and Development, 35, 898–911.

    Article  Google Scholar 

  • Howe, M. L., & Otgaar, H. (2013). Proximate mechanisms and the development of adaptive memory. Current Directions in Psychological Science, 22, 16–22.

    Article  Google Scholar 

  • Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Strauss, Giroux.

    Google Scholar 

  • Kahneman, D., & Tversky, A. (1982a). The simulation heuristic. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 201–208). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Kahneman, D., & Tversky, A. (1982b). Variants of uncertainty. Cognition, 11, 143–157.

    Article  PubMed  Google Scholar 

  • Kelley, H. H. (1967). Attribution theory in social psychology. In D. Levine (Ed.), Nebraska symposium on motivation (Vol. 15, pp. 192–238). Lincoln, NB: University of Nebraska Press.

    Google Scholar 

  • Khemlani, S. S., Barbey, A. K., & Jonson-Laird, P. N. (2014). Causal reasoning with mental models. Frontiers in Human Neuroscience, 8, 849.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S. H., Feldman, J., & Singh, M. (2013). Perceived causality can alter the perceived trajectory of apparent motion. Psychological Science, 24, 575–582.

    Article  PubMed  Google Scholar 

  • Kretch, K. S., & Adolph, K. E. (2013). Cliff or step? Posture-specific learning at the edge of a drop-off. Child Development, 84, 226–240.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kronenfeld, D. B. (2014). What “causal cognition” might mean. Frontiers in Psychology, 5, 1204. doi:10.3389/fpsyg.2014.01204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5, 831–843.

    Article  PubMed  Google Scholar 

  • Kuhn, D. (2010). What is scientific thinking and how does it develop? In U. Goswami (Ed.), Handbook of childhood cognitive development (2nd ed., pp. 497–523). Oxford, UK: Blackwell.

    Google Scholar 

  • Kuhn, D. (2012). The development of causal reasoning. Wiley Interdisciplinary Reviews: Cognitive Science, 3, 327–335.

    PubMed  Google Scholar 

  • Kuhn, D., & Dean, D. (2004). Connecting scientific reasoning and causal inference. Journal of Cognitive Development, 5, 261–288.

    Article  Google Scholar 

  • Kuhn, D., Pease, M., & Wirkala, C. (2009). Coordinating effects of multiple variables: A skill fundamental to causal and scientific reasoning. Journal of Experimental Child Psychology, 103, 268–284.

    Article  PubMed  Google Scholar 

  • Kushnir, T., & Gopnik, A. (2005). Young children infer causal strength from probabilities and interventions. Psychological Science, 16, 678–683.

    Article  PubMed  Google Scholar 

  • Kushnir, T., & Gopnik, A. (2007). Conditional probability versus spatial contiguity in causal learning: Preschoolers use new contingency evidence to overcome prior spatial assumptions. Developmental Psychology, 43, 186–196.

    Article  PubMed  Google Scholar 

  • Kushnir, T., Xu, F., & Wellman, H. M. (2010). Young children use statistical sampling to infer the preferences of other people. Psychological Science, 21, 1134–1140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefèvre, T., Lepresle, A., & Chariot, P. (2015). Detangling complex relationships in forensic data: Principles and use of causal networks and their application to clinical forensic science. International Journal of Legal Medicine, 129, 1163–1172.

    Article  PubMed  Google Scholar 

  • Legare, C. H. (2012). Exploring explanation: Explaining inconsistent evidence informs exploratory, hypothesis-testing behavior in young children. Child Development, 83, 173–185.

    Article  PubMed  Google Scholar 

  • Legare, C. H. (2014). The contributions of explanation and exploration to children’s scientific reasoning. Child Development Perspectives, 8, 101–106.

    Article  Google Scholar 

  • Legare, C. H., Gelman, S. A., & Wellman, H. W. (2010). Inconsistency with prior knowledge triggers children’s causal explanatory reasoning. Child Development, 81, 929–944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lepage, J. F., & Théoret, H. (2007). The mirror neuron system: Grasping others’ actions from birth? Developmental Science, 10, 513–523.

    Article  PubMed  Google Scholar 

  • Lombrozo, T. (2009). Explanation and categorization: How “why?” informs “what?”. Cognition, 110, 248–253.

    Article  PubMed  Google Scholar 

  • Loucks, J., & Sommerville, J. A. (2011, October). Adult and infant attention during action perception in context dependent. Poster presented at the biennial meeting of the Cognitive Development Society, Philadelphia, PA.

    Google Scholar 

  • Loucks, J., & Sommerville, J. A. (2012). The role of motor experience in understanding action function: The case of the precision grasp. Child Development, 83, 801–809.

    Article  PubMed  PubMed Central  Google Scholar 

  • Low, J. (2010). Preschoolers’ implicit and explicit false-belief understanding: Relations with complex syntactical mastery. Child Development, 81, 597–615.

    Article  PubMed  Google Scholar 

  • Lucas, C. G., Gopnik, A., & Griffiths, T. L. (2010). Developmental differences in learning the forms of causal relationships. In R. Camtrabone & S. Ohlsson (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 2852–2857). Austin, TX: Cognitive Science Society.

    Google Scholar 

  • Ma, L., & Xu, F. (2011). Young children’s use of statistical sampling evidence to infer the subjectivity of preferences. Cognition, 120, 403–411.

    Article  PubMed  Google Scholar 

  • Martin, A., Vouloumanos, A., & Onishi, K. (2012). Understanding the abstract role of speech in communication at 12 months. Cognition, 123, 50–60.

    Article  PubMed  Google Scholar 

  • Mascalzoni, E., Regolin, L., Vallortigara, G., & Simion, F. (2013). The cradle of causal reasoning: Newborns’ preference for physical causality. Developmental Science, 16, 327–335.

    Article  PubMed  Google Scholar 

  • McCormack, T., Frosch, C., & Burns, P. (2011). The relationship between children’s causal and counterfactual judgements. In C. Hoerl, T. McCormack, & S. R. Beck (Eds.), Understanding counterfactual, understanding causation: Issues in philosophy and psychology (pp. 54–74). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Meder, B., Mayrhofer, R., & Waldmann, M. R. (2014). Structure induction in diagnostic causal reasoning. Psychological Review, 121, 277–301.

    Article  PubMed  Google Scholar 

  • Meltzoff, A. N. (2007). “Like me”: A foundation for social cognition. Developmental Science, 10, 126–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meltzoff, A. N., & Decety, J. (2003). What imitation tells us about social cognition: A rapprochement between developmental psychology and cognitive science. Philosophical Transaction of the Royal Society London B, Biological Sciences, 358, 491–500.

    Article  Google Scholar 

  • Meltzoff, A. N., Waismeyer, A., & Gopnik, A. (2012). Learning about causes from people: Observational causal learning in 24-month-old infants. Developmental Psychology, 48, 1215–1228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michotte, A. E. (1946/1963). The perception of causality. New York: Basic Books.

    Google Scholar 

  • Muentener, P., & Carey, S. (2010). Infants’ causal representations of state change events. Cognition Psychology, 61, 63–86.

    Article  Google Scholar 

  • Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs? Science, 308, 255–258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Penn, D. C., Holyoak, K. J., & Povinelli, D. J. (2008). Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences, 31, 109–178.

    PubMed  Google Scholar 

  • Perfors, A., Tenenbaum, J. B., Griffiths, T. L., & Xu, F. (2011). A tutorial introduction to Bayesian models of cognitive development. Cognition, 120, 302–321.

    Article  PubMed  Google Scholar 

  • Perner, J., & Rafetseder, E. (2011). Counterfactual and other forms of conditional reasoning: Children lost in the nearest possible world. In C. Hoerl, T. McCormack, & S. R. Beck (Eds.), Understanding counterfactual, understanding causation: Issues in philosophy and psychology (pp. 90–109). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Piaget, J. (1926). The language and thought of the child. London, UK: Kegan Paul, Trench, Trubner, & Co. (Original work Le langage et la pensée chez l’enfant published 1923).

    Google Scholar 

  • Piaget, J. (1929). The child’s conception of the world. London, UK: Routledge and Kegan Paul.

    Google Scholar 

  • Piaget, J. (1930). The child’s conception of physical causality. New York: Harcourt Brace.

    Google Scholar 

  • Piaget, J. (1937). La construction du reel chez l’enfant [The construction of reality in the child]. Neuchatel, Switzerland: Delachaux et Niestle.

    Google Scholar 

  • Piaget, J. (1952). The origins of intelligence in children. Oxford, UK: International Universities Press.

    Book  Google Scholar 

  • Piaget, J. (1954). The construction of reality in the child (M. Cook, Trans.). New York: Basic Books.

    Google Scholar 

  • Piaget, J. (1955). The child’s conception of the world. London: Routledge & Kegan Paul.

    Google Scholar 

  • Rakison, D. H., & Krogh, L. (2012). Does causal action facilitate causal perception in infants younger than 6 months of age? Developmental Science, 15, 43–53.

    Article  PubMed  Google Scholar 

  • Reuter, K., Kirfel, L., van Riel, R., & Barlassina, L. (2014). The good, the bad, and the timely: How temporal order and moral judgment influence casual selection. Frontiers in Psychology, 5, 1336. doi:10.3389/fpsyg.2014.01336.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rolfs, M., Dambacher, M., & Cavanagh, P. (2013). Visual adaptation of the perception of causality. Current Biology, 23, 250–254.

    Article  PubMed  Google Scholar 

  • Rottman, B. M., & Hastie, R. (2013). Reasoning about causal relationships: Inferences on causal networks. Psychological Bulletin, 140, 109–139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlottmann, A., Ray, E. D., & Surian, L. (2012). Emerging perception of causality in action-and-reaction sequences from 4 to 6 months of age: Is it domain-specific? Journal of Experimental Child Psychology, 112, 208–230.

    Article  PubMed  Google Scholar 

  • Scholl, B. J., & Tremoulet, P. D. (2000). Perceptual causality and animacy. Trends in Cognitive Science, 4, 299–309.

    Article  Google Scholar 

  • Schulz, L. (2013). Finding new facts; thinking new thoughts. In F. Xu & T. Kushnir (Eds.), Advances in child development and behavior: Rational constructivism in cognitive development (Vol. 43, pp. 269–294). Waltham, MA: Academic.

    Chapter  Google Scholar 

  • Schulz, L. E., & Gopnik, A. (2004). Causal learning across domains. Developmental Psychology, 40, 162–176.

    Article  PubMed  Google Scholar 

  • Schulz, L. E., Gopnik, A., & Glymour, C. (2007). Preschool children learn about causal structure from conditional interventions. Developmental Psychology, 43, 1045–1050.

    Article  PubMed  Google Scholar 

  • Schulz, L. E., & Sommerville, J. (2006). God does not play dice: Causal determinism and children’s inferences about unobserved causes. Child Development, 77, 427–442.

    Article  PubMed  Google Scholar 

  • Schulz, L. E., Standing, H. R., & Bonawitz, E. B. (2008). Word, thought, and deed: The role of object categories in children’s inductive inferences and exploratory play. Developmental Psychology, 44, 1266–1276.

    Article  PubMed  Google Scholar 

  • Scott, R. M., & Baillargeon, R. (2013). Do infants really expect agents to act efficiently? A critical test of the rationality principle. Psychological Science, 24, 466–474.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seiver, E., Gopnik, A., & Goodman, N. (2013). Did she jump because she was the big sister or because the trampoline was safe? Causal inference and the development of social attribution. Child Development, 84, 443–454.

    Article  PubMed  Google Scholar 

  • Senju, A., & Csibra, G. (2008). Gaze following in human infants depends on communicative signals. Current Biology, 18, 668–671.

    Article  PubMed  Google Scholar 

  • Sloman, S. A., Fernbach, P. M., & Ewing, S. (2009). Causal models: The representational infrastructure for moral judgment. In D. M. Bartels, C. W. Bauman, L. J. Skitka, & D. L. Medin (Eds.), Psychological of learning and motivation (Moral judgment and decision making, Vol. 50, pp. 1–26). San Diego, CA: Academic.

    Chapter  Google Scholar 

  • Sloman, S. A., & Lagnado, D. (2015). Causality in thought. Annual Review of Psychology, 66, 223–247.

    Article  PubMed  Google Scholar 

  • Sobel, D. M. (2004). Exploring the coherence of young children’s explanatory abilities: Evidence from generating counterfactuals. British Journal of Developmental Psychology, 22, 37–58.

    Article  Google Scholar 

  • Sobel, D. M. (2011). Domain-specific causal knowledge and children’s reasoning about possibility. In C. Hoerl, T. McCormack, & S. R. Beck (Eds.), Understanding counterfactual, understanding causation: Issues in philosophy and psychology (pp. 123–146). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Sobel, D., & Buchanan, D. (2009). Bridging the gap: Causality-at-a-distance in children’s categorization and inferences about internal properties. Cognitive Development, 24, 274–283.

    Article  Google Scholar 

  • Sobel, D. M., & Kirkham, N. Z. (2007). Bayes nets and babies: Infants’ developing statistical reasoning abilities and their representation of causal knowledge. Developmental Science, 10, 298–306.

    Article  PubMed  Google Scholar 

  • Sobel, D. M., & Kirkham, N. Z. (2013). The influence of social information of children’s statistical and causal inferences. In F. Xu & T. Kushnir (Eds.), Advances in child development and behavior: Rational constructivism in cognitive development (Vol. 43, pp. 321–350). Waltham, MA: Academic.

    Chapter  Google Scholar 

  • Sobel, D. M., & Kushnir, T. (2013). Knowledge matters: How children evaluate the reliability of testimony as a process of rational inference. Psychological Review, 120, 779–797.

    Article  PubMed  Google Scholar 

  • Sobel, D. M., & Legare, C. H. (2014). Causal learning in children. Cognitive Science, 5, 413–427.

    PubMed  Google Scholar 

  • Sobel, D. M., Tenenbaum, J. B., & Gopnik, A. (2004). Children’s causal inferences from indirect evidence: Backwards blocking and Bayesian reasoning in preschoolers. Cognitive Science, 28, 303–333.

    Google Scholar 

  • Sommerville, J. A. (2007). From ends to means: Infants’ developing tool use representations. Invited talk at Department of Psychology colloquium series, Duke University, Raleigh-Durham, NC.

    Google Scholar 

  • Sommerville, J. A., Blumenthal, E. J., Venema, K., & Braun, K. (2011). The body in action: The impact of self-produced action on infants’ action perception and understanding. In V. Slaughter & C. Brownwell (Eds.), Early development of body representations (pp. 247–266). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Sommerville, J. A., Upshaw, M. B., & Loucks, J. (2013). The nature of goal-directed action representations in infancy. In F. Xu & T. Kushnir (Eds.), Advances in child development and behavior: Rational constructivism in cognitive development (Vol. 43, pp. 351–387). Waltham, MA: Academic.

    Chapter  Google Scholar 

  • Sommerville, J. A., & Woodward, A. L. (2005). Pulling out the intentional structure of action: The relation between action processing and action production in infancy. Cognition, 95, 1–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto, F. A., Gershman, S. J., & Niv, Y. (2014). Explaining compound generalization in associative and causal learning through rational principles of dimensional generalization. Psychological Review, 121, 526–558.

    Article  PubMed  PubMed Central  Google Scholar 

  • Southgate, V., Chevallier, C., & Csibra, G. (2009). Sensitivity to communicative relevance tells young children what to imitate. Developmental Science, 12, 1013–1019.

    Article  PubMed  Google Scholar 

  • Spirtes, P., Glymour, C., & Scheines, R. (2001). Causation, prediction, and search. Cambridge, MA: MIT Press.

    Google Scholar 

  • Surian, L., Caldi, S., & Sperber, D. (2007). Attribution of beliefs to 13-month-old infants. Psychological Science, 18, 580–586.

    Article  PubMed  Google Scholar 

  • Teglas, E., Vul, E., Girotto, V., Gonzalez, M., Tenenbaum, J. B., & Bonatti, L. L. (2011). Pure reasoning in 12-month-old infants as probabilistic inference. Science, 332, 1054–1059.

    Article  PubMed  Google Scholar 

  • Trueblood, J. S., & Busemeyer, J. R. (2011). A quantum probability account of order effects in inference. Cognitive Science, 35, 1518–1552.

    Article  PubMed  Google Scholar 

  • Trueblood, J. S., & Busemeyer, J. R. (2014). A quantum probability model of causal reasoning. Frontiers in Psychology, 3, 1–13. doi:10.3389/fpsyg.2012.00138.

    Google Scholar 

  • Turati, C., Natale, E., Bolognini, N., Seena, I., Picozzi, M., Longhi, E., et al. (2013). The early development of human mirror mechanisms: Evidence from electromyographic recordings at 3 and 6 months. Developmental Science, 16, 793–800.

    PubMed  Google Scholar 

  • Vaesen, K. (2012). The cognitive bases of human tool use. Behavioral and Brain Sciences, 35, 203–218.

    Article  PubMed  Google Scholar 

  • Waldmann, M. R., & Holyoak, K. J. (1992). Predictive and diagnostic learning within causal models: Asymmetries in cue competition. Journal of Experimental Psychology: General, 121, 222–236.

    Article  Google Scholar 

  • Walker, C. M., & Gopnik, A. (2014). Toddlers infer higher-order relational principles in causal learning. Psychological Science, 25, 161–169.

    Article  PubMed  Google Scholar 

  • Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains. Annual Review of Psychology, 43, 337–375.

    Article  PubMed  Google Scholar 

  • Wellman, H. M., & Liu, D. (2004). Scaling of theory-of-mind tasks. Child Development, 75, 523–541.

    Article  PubMed  Google Scholar 

  • Wellman, H., & Liu, D. (2007). Causal reasoning as informed by the early development of explanations. In A. Gopnik & L. Schulz (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 261–279). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Widlok, T. (2014). Agency, time, and causality. Frontiers in Psychology, 5, 1264. doi:10.3389/fpsyg.2014.01264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodward, J. (2003). Making things happen: A theory of causal explanation. New York: Oxford University Press.

    Google Scholar 

  • Wu, R., Gopnik, A., Richardson, D. C., & Kirkham, N. Z. (2011). Infants learn about objects from statistics and people. Developmental Psychology, 47, 1220–1229.

    Article  PubMed  Google Scholar 

  • Wu, R., & Kirkham, N. Z. (2010). No two cues are alike: Depth of learning during infancy is dependent on what orients attention. Journal of Experimental Child Psychology, 107, 118–136.

    Article  PubMed  Google Scholar 

  • Xu, F., & Denison, S. (2009). Statistical inference and sensitivity to sampling in 11-month-old infants. Cognition, 112, 97–104.

    Article  PubMed  Google Scholar 

  • Xu, F., & Garcia, V. (2008). Intuitive statistics by 8-month-old infants. Proceedings of the National Academy of Sciences, USA, 105, 5012–5015.

    Google Scholar 

  • Xu, F., & Kushnir, T. (2013a). Advances in child development and behavior: Rational constructivism in cognitive development (Vol. 43). Waltham, MA: Academic.

    Google Scholar 

  • Xu, F., & Kushnir, T. (2013b). Preface. In F. Xu & T. Kushnir (Eds.), Advances in child development and behavior: Rational constructivism in cognitive development (Vol. 43, pp. xi–xiv). Waltham, MA: Academic.

    Chapter  Google Scholar 

  • Young, A. G., Alibali, M. W., & Kalish, C. W. (2012). Disagreement and causal learning: Others’ hypotheses affect children’s evaluations of evidence. Developmental Psychology, 48, 1242–1253.

    Article  PubMed  Google Scholar 

  • Young, G. (2011). Development and causality: Neo-Piagetian perspectives. New York: Springer Science + Business Media.

    Book  Google Scholar 

  • Yu, Y., & Kushnir, T. (2014). Social context effects in 2- and 4-year-olds’ selective versus faithful imitation. Developmental Psychology, 50, 922–933.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Young, G. (2016). Causal Learning: Understanding the World. In: Unifying Causality and Psychology. Springer, Cham. https://doi.org/10.1007/978-3-319-24094-7_16

Download citation

Publish with us

Policies and ethics