Skip to main content

OCT and Compressive Optic Neuropathy

  • Chapter
  • First Online:
Book cover OCT in Central Nervous System Diseases

Abstract

Optical coherence tomography (OCT) has provided new and important resources for quantification of retinal neural loss in many different optic nerve diseases including compressive optic neuropathies. As in other optic neuropathies OCT can be useful for diagnosis and follow-up of both optic nerve and chiasmal compressive diseases. Axonal loss can be assessed both through peripapillary retinal nerve fiber layer measurements as well as using macular thickness measurements, particularly when segmented analysis of different retinal layers are analyzed. By analyzing the amount of axonal loss OCT can also be of help in estimating the possibility of visual improvement in such conditions. In this chapter we discuss the main use of OCT in compressive optic neuropathies including primary optic nerve tumors, extrinsic optic nerve compression by tumors or other orbital lesions and the important group of diseases causing chiasmal compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan JW. Compressive and infiltrative optic neuropathies. In: Chan JW, editor. Optic nerve disorders diagnosis and management. New York: Springer; 2007. p. 88–129.

    Chapter  Google Scholar 

  2. Monteiro ML, Medeiros FA, Ostroscki MR. Quantitative analysis of axonal loss in band atrophy of the optic nerve using scanning laser polarimetry. Br J Ophthalmol. 2003;87(1):32–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sergott RC, Balcer LJ. The latest on optical coherence tomography. J Neuroophthalmol. 2014;34(Suppl):S1–2.

    Article  PubMed  Google Scholar 

  4. Monteiro ML, Leal BC, Rosa AA, Bronstein MD. Optical coherence tomography analysis of axonal loss in band atrophy of the optic nerve. Br J Ophthalmol. 2004;88(7):896–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mendoza-Santiesteban CE, Lopez-Felipe D, Fernandez-Cherkasova L, Hernandez-Echavarria O, Hernandez-Silva Y, Gonzalez-Garcia A. Microperimetry in the study of neuro-ophthalmic diseases. Semin Ophthalmol. 2010;25(4):136–43.

    Article  PubMed  Google Scholar 

  6. Subei AM, Eggenberger ER. Optical coherence tomography: another useful tool in a neuro-ophthalmologist’s armamentarium. Curr Opin Ophthalmol. 2009;20(6):462–6.

    Article  PubMed  Google Scholar 

  7. Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, et al. Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina. 2010;30(2):235–45.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Adhi M, Duker JS. Optical coherence tomography--current and future applications. Curr Opin Ophthalmol. 2013;24(3):213–21.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Monteiro ML, Costa-Cunha LV, Cunha LP, Malta RF. Correlation between macular and retinal nerve fibre layer Fourier-domain OCT measurements and visual field loss in chiasmal compression. Eye (Lond). 2010;24(8):1382–90.

    Article  CAS  Google Scholar 

  10. Monteiro ML, Hokazono K, Fernandes DB, Costa-Cunha LV, Sousa RM, Raza AS, et al. Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(5):3328–36.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pasol J. Neuro-ophthalmic disease and optical coherence tomography: glaucoma look-alikes. Curr Opin Ophthalmol. 2011;22(2):124–32.

    Article  PubMed  Google Scholar 

  12. Danesh-Meyer HV, Papchenko T, Savino PJ, Law A, Evans J, Gamble GD. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci. 2008;49(5):1879–85.

    Article  PubMed  Google Scholar 

  13. Kardon RH. Role of the macular optical coherence tomography scan in neuro-ophthalmology. J Neuroophthalmol. 2011;31(4):353–61.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dutton JJ. Optic nerve sheath meningiomas. Surv Ophthalmol. 1992;37(3):167–83.

    Article  CAS  PubMed  Google Scholar 

  15. Spencer WH. Primary neoplasms of the optic nerve and its sheaths: clinical features and current concepts of pathogenetic mechanisms. Trans Am Ophthalmol Soc. 1972;70:490–528.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dutton JJ. Optic nerve gliomas and meningiomas. Neurol Clin. 1991;9(1):163–77.

    CAS  PubMed  Google Scholar 

  17. Saeed P, Blank L, Selva D, Wolbers JG, Nowak PJ, Geskus RB, et al. Primary radiotherapy in progressive optic nerve sheath meningiomas: a long-term follow-up study. Br J Ophthalmol. 2010;94(5):564–8.

    Article  PubMed  Google Scholar 

  18. Solda F, Wharram B, De Ieso PB, Bonner J, Ashley S, Brada M. Long-term efficacy of fractionated radiotherapy for benign meningiomas. Radiother Oncol. 2013;109(2):330–4.

    Article  PubMed  Google Scholar 

  19. Rosenberg LF, Miller NR. Visual results after microsurgical removal of meningiomas involving the anterior visual system. Arch Ophthalmol. 1984;102(7):1019–23.

    Article  CAS  PubMed  Google Scholar 

  20. Loo JL, Tian J, Miller NR, Subramanian PS. Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas. Br J Ophthalmol. 2013;97(11):1455–8.

    Article  PubMed  Google Scholar 

  21. Dutton JJ. Gliomas of the anterior visual pathway. Surv Ophthalmol. 1994;38(5):427–52.

    Article  CAS  PubMed  Google Scholar 

  22. Miller NR. Primary tumours of the optic nerve and its sheath. Eye (Lond). 2004;18(11):1026–37.

    Article  CAS  Google Scholar 

  23. Kelly JP, Leary S, Khanna P, Weiss AH. Longitudinal measures of visual function, tumor volume, and prediction of visual outcomes after treatment of optic pathway gliomas. Ophthalmology. 2012;119(6):1231–7.

    Article  PubMed  Google Scholar 

  24. Chang L, El-Dairi MA, Frempong TA, Burner EL, Bhatti MT, Young TL, et al. Optical coherence tomography in the evaluation of neurofibromatosis type-1 subjects with optic pathway gliomas. J AAPOS. 2010;14(6):511–7.

    Article  PubMed  Google Scholar 

  25. Avery RA, Liu GT, Fisher MJ, Quinn GE, Belasco JB, Phillips PC, et al. Retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol. 2011;151(3):542–9.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Parrozzani R, Clementi M, Kotsafti O, Miglionico G, Trevisson E, Orlando G, et al. Optical coherence tomography in the diagnosis of optic pathway gliomas. Invest Ophthalmol Vis Sci. 2013;54(13):8112–8.

    Article  PubMed  Google Scholar 

  27. Fard MA, Fakhree S, Eshraghi B. Correlation of optical coherence tomography parameters with clinical and radiological progression in patients with symptomatic optic pathway gliomas. Graefes Arch Clin Exp Ophthalmol. 2013;251(10):2429–36.

    Article  PubMed  Google Scholar 

  28. Gu S, Glaug N, Cnaan A, Packer RJ, Avery RA. Ganglion cell layer-inner plexiform layer thickness and vision loss in young children with optic pathway gliomas. Invest Ophthalmol Vis Sci. 2014;55(3):1402–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Avery RA, Hwang EI, Ishikawa H, Acosta MT, Hutcheson KA, Santos D, et al. Handheld optical coherence tomography during sedation in young children with optic pathway gliomas. JAMA Ophthalmol. 2014;132(3):265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McKeag D, Lane C, Lazarus JH, Baldeschi L, Boboridis K, Dickinson AJ, et al. Clinical features of dysthyroid optic neuropathy: a European Group on Graves’ Orbitopathy (EUGOGO) survey. Br J Ophthalmol. 2007;91(4):455–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hallin ES, Feldon SE, Luttrell J. Graves’ ophthalmopathy: III. Effect of transantral orbital decompression on optic neuropathy. Br J Ophthalmol. 1988;72(9):683–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ben Simon GJ, Syed HM, Douglas R, Schwartz R, Goldberg RA, McCann JD. Clinical manifestations and treatment outcome of optic neuropathy in thyroid-related orbitopathy. Ophthalmic Surg Lasers Imaging. 2006;37(4):284–90.

    PubMed  Google Scholar 

  33. Neigel JM, Rootman J, Belkin RI, Nugent RA, Drance SM, Beattie CW, et al. Dysthyroid optic neuropathy. The crowded orbital apex syndrome. Ophthalmology. 1988;95(11):1515–21.

    Article  CAS  PubMed  Google Scholar 

  34. Goncalves AC, Gebrim EM, Monteiro ML. Imaging studies for diagnosing Graves’ orbitopathy and dysthyroid optic neuropathy. Clinics (Sao Paulo). 2012;67(11):1327–34.

    Article  Google Scholar 

  35. Goncalves AC, Silva LN, Gebrim EM, Monteiro ML. Quantification of orbital apex crowding for screening of dysthyroid optic neuropathy using multidetector CT. AJNR Am J Neuroradiol. 2012;33(8):1602–7.

    Article  CAS  PubMed  Google Scholar 

  36. Wang JK, Kardon RH, Kupersmith MJ, Garvin MK. Automated quantification of volumetric optic disc swelling in papilledema using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(7):4069–75.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kupersmith MJ, Sibony P, Mandel G, Durbin M, Kardon RH. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci. 2011;52(9):6558–64.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Forte R, Bonavolonta P, Vassallo P. Evaluation of retinal nerve fiber layer with optic nerve tracking optical coherence tomography in thyroid-associated orbitopathy. Ophthalmologica. 2010;224(2):116–21.

    Article  PubMed  Google Scholar 

  39. Unsold R, Hoyt WF. Band atrophy of the optic nerve. The histology of temporal hemianopsia. Arch Ophthalmol. 1980;98(9):1637–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kanamori A, Nakamura M, Matsui N, Nagai A, Nakanishi Y, Kusuhara S, et al. Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs. Ophthalmology. 2004;111(12):2278–83.

    Article  PubMed  Google Scholar 

  41. Danesh-Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, et al. Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci. 2006;47(11):4827–35.

    Article  PubMed  Google Scholar 

  42. Monteiro ML, Leal BC, Moura FC, Vessani RM, Medeiros FA. Comparison of retinal nerve fibre layer measurements using optical coherence tomography versions 1 and 3 in eyes with band atrophy of the optic nerve and normal controls. Eye (Lond). 2007;21(1):16–22.

    Article  CAS  Google Scholar 

  43. Moura FC, Medeiros FA, Monteiro ML. Evaluation of macular thickness measurements for detection of band atrophy of the optic nerve using optical coherence tomography. Ophthalmology. 2007;114(1):175–81.

    Article  PubMed  Google Scholar 

  44. Costa-Cunha LV, Cunha LP, Malta RF, Monteiro ML. Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve. Am J Ophthalmol. 2009;147(1):56–63.e2.

    Article  PubMed  Google Scholar 

  45. Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107(10):1809–15.

    Article  CAS  PubMed  Google Scholar 

  46. Shin HY, Park HY, Choi JA, Park CK. Macular ganglion cell-inner plexiform layer thinning in patients with visual field defect that respects the vertical meridian. Graefes Arch Clin Exp Ophthalmol. 2014;252(9):1501–7.

    Article  PubMed  Google Scholar 

  47. Monteiro ML, Cunha LP, Costa-Cunha LV, Maia Jr OO, Oyamada MK. Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression. Invest Ophthalmol Vis Sci. 2009;50(8):3535–41.

    Article  PubMed  Google Scholar 

  48. Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK. Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Invest Ophthalmol Vis Sci. 2011;52(11):8527–33.

    Article  PubMed  Google Scholar 

  49. Kerrison JB, Lynn MJ, Baer CA, Newman SA, Biousse V, Newman NJ. Stages of improvement in visual fields after pituitary tumor resection. Am J Ophthalmol. 2000;130(6):813–20.

    Article  CAS  PubMed  Google Scholar 

  50. Findlay G, McFadzean RM, Teasdale G. Recovery of vision following treatment of pituitary tumours; application of a new system of assessment to patients treated by transsphenoidal operation. Acta Neurochir (Wien). 1983;68(3–4):175–86.

    Article  CAS  Google Scholar 

  51. Gnanalingham KK, Bhattacharjee S, Pennington R, Ng J, Mendoza N. The time course of visual field recovery following transphenoidal surgery for pituitary adenomas: predictive factors for a good outcome. J Neurol Neurosurg Psychiatry. 2005;76(3):415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Monteiro ML, Zambon BK, Cunha LP. Predictive factors for the development of visual loss in patients with pituitary macroadenomas and for visual recovery after optic pathway decompression. Can J Ophthalmol. 2010;45(4):404–8.

    Article  PubMed  Google Scholar 

  53. Cohen AR, Cooper PR, Kupersmith MJ, Flamm ES, Ransohoff J. Visual recovery after transsphenoidal removal of pituitary adenomas. Neurosurgery. 1985;17(3):446–52.

    Article  CAS  PubMed  Google Scholar 

  54. Jacob M, Raverot G, Jouanneau E, Borson-Chazot F, Perrin G, Rabilloud M, et al. Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol. 2009;147(1):64–70.e2.

    Article  PubMed  Google Scholar 

  55. Ohkubo S, Higashide T, Takeda H, Murotani E, Hayashi Y, Sugiyama K. Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn J Ophthalmol. 2012;56(1):68–75.

    Article  PubMed  Google Scholar 

  56. Moon CH, Hwang SC, Ohn YH, Park TK. The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest Ophthalmol Vis Sci. 2011;52(11):7966–73.

    Article  PubMed  Google Scholar 

  57. Cunha LP, Oyamada MK, Monteiro ML. Pattern electroretinograms for the detection of neural loss in patients with permanent temporal visual field defect from chiasmal compression. Doc Ophthalmol. 2008;117:223–32.

    Article  PubMed  Google Scholar 

  58. Leal BC, Moura FC, Monteiro MLR. Retinal nerve fiber layer loss documented by Stratus OCT in patients with pituitary adenoma: case report. Arq Bras Oftalmol. 2006;69:251–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário Luiz Ribeiro Monteiro MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Monteiro, M.L.R. (2016). OCT and Compressive Optic Neuropathy. In: Grzybowski, A., Barboni, P. (eds) OCT in Central Nervous System Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24085-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24085-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24083-1

  • Online ISBN: 978-3-319-24085-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics