Skip to main content

Animal Models in Neuro Ophthalmology

  • Chapter
  • First Online:
Book cover OCT in Central Nervous System Diseases

Abstract

Neuro-ophthalmology is the branch of ophthalmology dedicated to the study of neurological conditions which affect the visual system. An adequate understanding of the aetiology and pathophysiology of neuro-ophthalmic conditions is fundamental for establishing successful therapeutic strategies. Animal models are therefore considered crucial for understanding and investigating pathological events. Several animal models have been developed for studying neuro-ophthalmic disorders. However, their validity is closely related to the level of similarity with the human pathology. Rodent models are extensively used due to their accessibility and cost efficiency. In particular, mouse models are recognised as among the best genetic models due to the ability to easily alter their genome. Rats are easy to breed and mostly used for toxic/pharmacological and surgical models. Nevertheless, rodent models are still suboptimal for human neuro-ophthalmic conditions because of anatomical differences between species. Primate models have the obvious advantage of sharing vast anatomical and genomic similarities with humans. However, monkeys are expensive, difficult to breed and can only be handled by qualified personnel, all of which limits their suitability. Hence, there is no perfect species for studying neuro-ophthalmic conditions.

This chapter will focus on the most common animal models of neuro-ophthalmic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sormani MP, Bruzzi P. Can we measure long-term treatment effects in multiple sclerosis? Nature reviews Neurology. 2015;11(3):176–82.

    Article  PubMed  Google Scholar 

  2. Gold R, Hartung HP, Toyka KV. Animal models for autoimmune demyelinating disorders of the nervous system. Mol Med Today. 2000;6(2):88–91.

    Article  CAS  PubMed  Google Scholar 

  3. Klaren RE, Motl RW, Woods JA, Miller SD. Effects of exercise in experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis). J Neuroimmunol. 2014;274(1–2):14–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vesterinen HM, Sena ES, ffrench-Constant C, Williams A, Chandran S, Macleod MR. Improving the translational hit of experimental treatments in multiple sclerosis. Mult Scler. 2010;16(9):1044–55.

    Article  PubMed  Google Scholar 

  5. Pryce G, O’Neill JK, Croxford JL, Amor S, Hankey DJ, East E, et al. Autoimmune tolerance eliminates relapses but fails to halt progression in a model of multiple sclerosis. J Neuroimmunol. 2005;165(1–2):41–52.

    Article  CAS  PubMed  Google Scholar 

  6. Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev. 2014;47C:485–505.

    Article  CAS  Google Scholar 

  7. Sachs HH, Bercury KK, Popescu DC, Narayanan SP, Macklin WB. A new model of cuprizone-mediated demyelination/remyelination. ASN Neuro. 2014;6(5):1–16.

    Google Scholar 

  8. van der Star BJ, Vogel DY, Kipp M, Puentes F, Baker D, Amor S. In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets. 2012;11(5):570–88.

    Article  PubMed  Google Scholar 

  9. Nastasijevic B, Wright BR, Smestad J, Warrington AE, Rodriguez M, Maher 3rd LJ. Remyelination induced by a DNA aptamer in a mouse model of multiple sclerosis. PLoS One. 2012;7(6):e39595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-tur J, et al. Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature. 1996;383(6602):710–3.

    Article  CAS  PubMed  Google Scholar 

  11. Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science. 2001;293(5534):1491–5.

    Article  CAS  PubMed  Google Scholar 

  12. Higuchi M, Ishihara T, Zhang B, Hong M, Andreadis A, Trojanowski J, et al. Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron. 2002;35(3):433–46.

    Article  CAS  PubMed  Google Scholar 

  13. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet. 2000;25(4):402–5.

    Article  CAS  PubMed  Google Scholar 

  14. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci Off J Soc Neurosci. 2006;26(40):10129–40.

    Article  CAS  Google Scholar 

  15. LaFerla FM, Oddo S. Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med. 2005;11(4):170–6.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao BQ, Suzuki Y, Kondo K, Kawano K, Ikeda Y, Umemura K. A novel MCA occlusion model of photothrombotic ischemia with cyclic flow reductions: development of cerebral hemorrhage induced by heparin. Brain Res Brain Res Protoc. 2002;9(2):85–92.

    Article  CAS  PubMed  Google Scholar 

  17. Qi X, Lewin AS, Hauswirth WW, Guy J. Suppression of complex I gene expression induces optic neuropathy. Ann Neurol. 2003;53(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  18. Marella M, Seo BB, Thomas BB, Matsuno-Yagi A, Yagi T. Successful amelioration of mitochondrial optic neuropathy using the yeast NDI1 gene in a rat animal model. PLoS One. 2010;5(7), e11472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lin CS, Sharpley MS, Fan W, Waymire KG, Sadun AA, Carelli V, et al. Mouse mtDNA mutant model of Leber hereditary optic neuropathy. Proc Natl Acad Sci U S A. 2012;109(49):20065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frohman EM, Kerr D. Is neuromyelitis optica distinct from multiple sclerosis?: something for “lumpers” and “splitters”. Arch Neurol. 2007;64(6):903–5.

    Article  PubMed  Google Scholar 

  21. Bettelli E, Baeten D, Jager A, Sobel RA, Kuchroo VK. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J Clin Invest. 2006;116(9):2393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoglund RA, Maghazachi AA. Multiple sclerosis and the role of immune cells. World J Exp Med. 2014;4(3):27–37.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Robinson AP, Harp CT, Noronha A, Miller SD. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol. 2014;122:173–89.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kuerten S, Lehmann PV. The immune pathogenesis of experimental autoimmune encephalomyelitis: lessons learned for multiple sclerosis? J Interferon Cytokine Res Off J Int Soc Interferon and Cytokine Res. 2011;31(12):907–16.

    Article  CAS  Google Scholar 

  25. Handel AE, Lincoln MR, Ramagopalan SV. Of mice and men: experimental autoimmune encephalitis and multiple sclerosis. Eur J Clin Invest. 2011;41(11):1254–8.

    Article  PubMed  Google Scholar 

  26. Friese MA, Montalban X, Willcox N, Bell JI, Martin R, Fugger L. The value of animal models for drug development in multiple sclerosis. Brain J Neurol. 2006;129(Pt 8):1940–52.

    Article  Google Scholar 

  27. Takizawa S, Kaneyama T, Tsugane S, Takeichi N, Yanagisawa S, Ichikawa M, et al. Role of the Programmed Death-1 (PD-1) pathway in regulation of Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J Neuroimmunol. 2014;274(1–2):78–85.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez NE, Karlsson F, Sato F, Kawai E, Omura S, Minagar A, et al. Protective and detrimental roles for regulatory T cells in a viral model for multiple sclerosis. Brain Pathol. 2014;24(5):436–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Lipton HL, Perelson AS, Dahari H. Modeling the acute and chronic phases of Theiler murine encephalomyelitis virus infection. J Virol. 2013;87(7):4052–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mecha M, Carrillo-Salinas FJ, Mestre L, Feliu A, Guaza C. Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler’s virus. Prog Neurobiol. 2013;101–102:46–64.

    Article  PubMed  Google Scholar 

  31. Jones MV, Collongues N, de Seze J, Kinoshita M, Nakatsuji Y, Levy M. Review of animal models of neuromyelitis optica. Mult Scler Relat Disord. 2012;1(4):174–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T, et al. Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem Biophys Res Commun. 2009;386(4):623–7.

    Article  CAS  PubMed  Google Scholar 

  33. Saadoun S, Waters P, Bell BA, Vincent A, Verkman AS, Papadopoulos MC. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. Brain J Neurol. 2010;133(Pt 2):349–61.

    Article  Google Scholar 

  34. Arnold AC, Hepler RS. Natural history of nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol Off J North Am Neuroophthalmol Soc. 1994;14(2):66–9.

    CAS  Google Scholar 

  35. Arnold AC. Pathogenesis of nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol Off J North Am Neuroophthalmol Soc. 2003;23(2):157–63.

    Article  Google Scholar 

  36. Albrecht MC. Comparative anatomy of the optic nerve head and inner retina in non-primate animal models used for glaucoma research. Open Ophthalmol J. 2008;2:94–101.

    Article  Google Scholar 

  37. Bernstein SL, Guo Y, Kelman SE, Flower RW, Johnson MA. Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2003;44(10):4153–62.

    Article  PubMed  Google Scholar 

  38. Williams RW, Strom RC, Rice DS, Goldowitz D. Genetic and environmental control of variation in retinal ganglion cell number in mice. J Neurosci Off J Soc Neurosci. 1996;16(22):7193–205.

    CAS  Google Scholar 

  39. Perry VH, Henderson Z, Linden R. Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. J Comp Neurol. 1983;219(3):356–68.

    Article  CAS  PubMed  Google Scholar 

  40. Morrison JC, Cork LC, Dunkelberger GR, Brown A, Quigley HA. Aging changes of the rhesus monkey optic nerve. Invest Ophthalmol Vis Sci. 1990;31(8):1623–7.

    CAS  PubMed  Google Scholar 

  41. Mosinger JL, Olney JW. Photothrombosis-induced ischemic neuronal degeneration in the rat retina. Exp Neurol. 1989;105(1):110–3.

    Article  CAS  PubMed  Google Scholar 

  42. Bernstein SL, Johnson MA, Miller NR. Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models. Prog Retin Eye Res. 2011;30(3):167–87.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goldenberg-Cohen N, Guo Y, Margolis F, Cohen Y, Miller NR, Bernstein SL. Oligodendrocyte dysfunction after induction of experimental anterior optic nerve ischemia. Invest Ophthalmol Vis Sci. 2005;46(8):2716–25.

    Article  PubMed  Google Scholar 

  44. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  45. Chen CS, Johnson MA, Flower RA, Slater BJ, Miller NR, Bernstein SL. A primate model of nonarteritic anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2008;49(7):2985–92.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ziccardi L, Sadun F, De Negri AM, Barboni P, Savini G, Borrelli E, et al. Retinal function and neural conduction along the visual pathways in affected and unaffected carriers with Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2013;54(10):6893–901.

    Article  PubMed  Google Scholar 

  47. La Morgia C, Carbonelli M, Barboni P, Sadun AA, Carelli V. Medical management of hereditary optic neuropathies. Front Neurol. 2014;5:141.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Jones D, Gonzalez-Lima F. Mouse model of optic neuropathy caused by mitochondrial complex I dysfunction. Neurosci Lett. 2002;326(2):97–100.

    Article  CAS  PubMed  Google Scholar 

  49. Musardo S, Saraceno C, Pelucchi S, Marcello E. Trafficking in neurons: searching for new targets for Alzheimer’s disease future therapies. Eur J Pharmacol. 2013;719(1–3):84–106.

    Article  CAS  PubMed  Google Scholar 

  50. Nogueras-Ortiz CJ, De Jesus-Cortes HJ, Vaquer-Alicea J, Vega IE. Novel autoimmune response in a tauopathy mouse model. Front Neurosci. 2014;7:277.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ni R, Gillberg PG, Bergfors A, Marutle A, Nordberg A. Amyloid tracers detect multiple binding sites in Alzheimer’s disease brain tissue. Brain J Neurol. 2013;136(Pt 7):2217–27.

    Article  Google Scholar 

  52. Krantic S, Torriglia A. Retina: source of the earliest biomarkers for Alzheimer’s disease? J Alzheimers Dis JAD. 2014;40(2):237–43.

    PubMed  Google Scholar 

  53. Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, et al. Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol. 2009;175(5):2099–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dutescu RM, Li QX, Crowston J, Masters CL, Baird PN, Culvenor JG. Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes Arch Clin Exp Ophthalmol. 2009;247(9):1213–21.

    Article  CAS  PubMed  Google Scholar 

  55. Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S. Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci. 2009;50(2):793–800.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ning A, Cui J, To E, Ashe KH, Matsubara J. Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci. 2008;49(11):5136–43.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage. 2011;54 Suppl 1:S204–17.

    Article  CAS  PubMed  Google Scholar 

  58. Loffler KU, Edward DP, Tso MO. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest Ophthalmol Vis Sci. 1995;36(1):24–31.

    CAS  PubMed  Google Scholar 

  59. de Lemos ML, de la Torre AV, Petrov D, Brox S, Folch J, Pallas M, et al. Evaluation of hypoxia inducible factor expression in inflammatory and neurodegenerative brain models. Int J Biochem Cell Biol. 2013;45(7):1377–88.

    Article  PubMed  CAS  Google Scholar 

  60. Park JH, Widi GA, Gimbel DA, Harel NY, Lee DH, Strittmatter SM. Subcutaneous Nogo receptor removes brain amyloid-beta and improves spatial memory in Alzheimer’s transgenic mice. J Neurosci Off J Soc Neurosci. 2006;26(51):13279–86.

    Article  CAS  Google Scholar 

  61. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49(4):489–502.

    Article  CAS  PubMed  Google Scholar 

  62. Yao J, Taylor M, Davey F, Ren Y, Aiton J, Coote P, et al. Interaction of amyloid binding alcohol dehydrogenase/Abeta mediates up-regulation of peroxiredoxin II in the brains of Alzheimer’s disease patients and a transgenic Alzheimer’s disease mouse model. Mol Cell Neurosci. 2007;35(2):377–82.

    Article  CAS  PubMed  Google Scholar 

  63. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med. 1998;4(1):97–100.

    Article  CAS  PubMed  Google Scholar 

  64. Schuessel K, Schafer S, Bayer TA, Czech C, Pradier L, Muller-Spahn F, et al. Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol Dis. 2005;18(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  65. Esposito L, Raber J, Kekonius L, Yan F, Yu GQ, Bien-Ly N, et al. Reduction in mitochondrial superoxide dismutase modulates Alzheimer’s disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J Neurosci Off J Soc Neurosci. 2006;26(19):5167–79.

    Article  CAS  Google Scholar 

  66. Duyckaerts C, Potier MC, Delatour B. Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol. 2008;115(1):5–38.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hutton M, Lewis J, Dickson D, Yen SH, McGowan E. Analysis of tauopathies with transgenic mice. Trends Mol Med. 2001;7(10):467–70.

    Article  CAS  PubMed  Google Scholar 

  68. Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, et al. Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem. 2005;280(5):3963–73.

    Article  CAS  PubMed  Google Scholar 

  69. Gotz J, Deters N, Doldissen A, Bokhari L, Ke Y, Wiesner A, et al. A decade of tau transgenic animal models and beyond. Brain Pathol. 2007;17(1):91–103.

    Article  CAS  PubMed  Google Scholar 

  70. Ohno M, Cole SL, Yasvoina M, Zhao J, Citron M, Berry R, et al. BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiol Dis. 2007;26(1):134–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging. 2012;33(1):196 e29–40.

    Article  PubMed  CAS  Google Scholar 

  72. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron. 2003;39(3):409–21.

    Article  CAS  PubMed  Google Scholar 

  73. Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging. 2003;24(8):1063–70.

    Article  CAS  PubMed  Google Scholar 

  74. Gimenez-Llort L, Blazquez G, Canete T, Johansson B, Oddo S, Tobena A, et al. Modeling behavioral and neuronal symptoms of Alzheimer’s disease in mice: a role for intraneuronal amyloid. Neurosci Biobehav Rev. 2007;31(1):125–47.

    Article  CAS  PubMed  Google Scholar 

  75. Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, et al. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest. 2004;114(1):121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron. 2004;43(3):321–32.

    Article  CAS  PubMed  Google Scholar 

  77. Oddo S, Caccamo A, Green KN, Liang K, Tran L, Chen Y, et al. Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2005;102(8):3046–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Smith IF, Green KN, LaFerla FM. Calcium dysregulation in Alzheimer’s disease: recent advances gained from genetically modified animals. Cell Calcium. 2005;38(3–4):427–37.

    Article  CAS  PubMed  Google Scholar 

  79. Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM. Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron. 2005;45(5):675–88.

    Article  CAS  PubMed  Google Scholar 

  80. Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation. 2005;2:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM. Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem. 2005;94(6):1711–8.

    Article  CAS  PubMed  Google Scholar 

  82. Shimazawa M, Inokuchi Y, Okuno T, Nakajima Y, Sakaguchi G, Kato A, et al. Reduced retinal function in amyloid precursor protein-over-expressing transgenic mice via attenuating glutamate-N-methyl-d-aspartate receptor signaling. J Neurochem. 2008;107(1):279–90.

    Article  CAS  PubMed  Google Scholar 

  83. Lee CW, Shih YH, Kuo YM. Cerebrovascular pathology and amyloid plaque formation in Alzheimer’s disease. Curr Alzheimer Res. 2014;11(1):4–10.

    Article  CAS  PubMed  Google Scholar 

  84. Alexandrov PN, Pogue A, Bhattacharjee S, Lukiw WJ. Retinal amyloid peptides and complement factor H in transgenic models of Alzheimer’s disease. Neuroreport. 2011;22(12):623–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Savini G, Barboni P, Carbonelli M, Hoffer KJ. Comparison of methods to measure corneal power for intraocular lens power calculation using a rotating Scheimpflug camera. J Cataract Refract Surg. 2013;39(4):598–604.

    Article  PubMed  Google Scholar 

  86. Worth PF. How to treat Parkinson’s disease in 2013. Clin Med. 2013;13(1):93–6.

    Article  Google Scholar 

  87. Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 1985;36(26):2503–8.

    Article  CAS  PubMed  Google Scholar 

  88. McNaught KS, Perl DP, Brownell AL, Olanow CW. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol. 2004;56(1):149–62.

    Article  CAS  PubMed  Google Scholar 

  89. Bove J, Prou D, Perier C, Przedborski S. Toxin-induced models of Parkinson’s disease. NeuroRx J Am Soc Exp Neurother. 2005;2(3):484–94.

    Google Scholar 

  90. Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol. 2012;2012:845618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem. 2002;277(3):1641–4.

    Article  CAS  PubMed  Google Scholar 

  92. Freire C, Koifman S. Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology. 2012;33(5):947–71.

    Article  CAS  PubMed  Google Scholar 

  93. Annett LE, Torres EM, Clarke DJ, Ishida Y, Barker RA, Ridley RM, et al. Survival of nigral grafts within the striatum of marmosets with 6-OHDA lesions depends critically on donor embryo age. Cell Transplant. 1997;6(6):557–69.

    Article  CAS  PubMed  Google Scholar 

  94. Crofts HS, Dalley JW, Collins P, Van Denderen JC, Everitt BJ, Robbins TW, et al. Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cereb Cortex. 2001;11(11):1015–26.

    Article  CAS  PubMed  Google Scholar 

  95. He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res. 2001;909(1–2):187–93.

    Article  CAS  PubMed  Google Scholar 

  96. Ma KH, Huang WS, Chen CH, Lin SZ, Wey SP, Ting G, et al. Dual SPECT of dopamine system using [99mTc]TRODAT-1 and [123I]IBZM in normal and 6-OHDA-lesioned formosan rock monkeys. Nucl Med Biol. 2002;29(5):561–7.

    Article  CAS  PubMed  Google Scholar 

  97. Lundblad M, Picconi B, Lindgren H, Cenci MA. A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis. 2004;16(1):110–23.

    Article  CAS  PubMed  Google Scholar 

  98. Allen JM, Cross AJ, Crow TJ, Javoy-Agid F, Agid Y, Bloom SR. Dissociation of neuropeptide Y and somatostatin in Parkinson’s disease. Brain Res. 1985;337(1):197–200.

    Article  CAS  PubMed  Google Scholar 

  99. Seniuk NA, Tatton WG, Greenwood CE. Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Res. 1990;527(1):7–20.

    Article  CAS  PubMed  Google Scholar 

  100. Sirinathsinghji DJ, Kupsch A, Mayer E, Zivin M, Pufal D, Oertel WH. Cellular localization of tyrosine hydroxylase mRNA and cholecystokinin mRNA-containing cells in the ventral mesencephalon of the common marmoset: effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res Mol Brain Res. 1992;12(1–3):267–74.

    Article  CAS  PubMed  Google Scholar 

  101. Ovadia A, Zhang Z, Gash DM. Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys. Neurobiol Aging. 1995;16(6):931–7.

    Article  CAS  PubMed  Google Scholar 

  102. Blandini F, Armentero MT. Animal models of Parkinson’s disease. FEBS J. 2012;279(7):1156–66.

    Article  CAS  PubMed  Google Scholar 

  103. Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91(4):1161–218.

    Article  CAS  PubMed  Google Scholar 

  104. Lindgren HS, Lelos MJ, Dunnett SB. Do alpha-synuclein vector injections provide a better model of Parkinson’s disease than the classic 6-hydroxydopamine model? Exp Neurol. 2012;237(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  105. Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD, Giusti P. Alpha-synuclein and Parkinson’s disease. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18(6):617–26.

    CAS  Google Scholar 

  106. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3(12):1301–6.

    Article  CAS  PubMed  Google Scholar 

  107. Marking LL. Oral toxicity of rotenone to mammals. Investigations in fish control. La Crosse, WI: U.S. Fish and Wildlife Service; 1988.

    Google Scholar 

  108. Mastroberardino PG, Hoffman EK, Horowitz MP, Betarbet R, Taylor G, Cheng D, et al. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis. 2009;34(3):417–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lapointe N, St-Hilaire M, Martinoli MG, Blanchet J, Gould P, Rouillard C, et al. Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18(6):717–9.

    CAS  Google Scholar 

  110. Drolet RE, Cannon JR, Montero L, Greenamyre JT. Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol Dis. 2009;36(1):96–102.

    Article  CAS  PubMed  Google Scholar 

  111. Houlden H, Singleton AB. The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol. 2012;124(3):325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gasser T. Molecular genetic findings in LRRK2 American, Canadian and German families. J Neural Transm Suppl. 2006;70:231–4.

    Article  CAS  PubMed  Google Scholar 

  113. Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet. 2006;7(4):306–18.

    Article  CAS  PubMed  Google Scholar 

  114. Zheng LF, Wang ZY, Li XF, Song J, Hong F, Lian H, et al. Reduced expression of choline acetyltransferase in vagal motoneurons and gastric motor dysfunction in a 6-OHDA rat model of Parkinson’s disease. Brain Res. 2011;1420:59–67.

    Article  CAS  PubMed  Google Scholar 

  115. Javoy F, Sotelo C, Herbet A, Agid Y. Specificity of dopaminergic neuronal degeneration induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine system. Brain Res. 1976;102(2):201–15.

    Article  CAS  PubMed  Google Scholar 

  116. Jeon BS, Jackson-Lewis V, Burke RE. 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration J Neurodegenerative Disord Neuroprotection Neuroregeneration. 1995;4(2):131–7.

    CAS  Google Scholar 

  117. Faull RL, Laverty R. Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra. Exp Neurol. 1969;23(3):332–40.

    Article  CAS  PubMed  Google Scholar 

  118. Lao CL, Kuo YH, Hsieh YT, Chen JC. Intranasal and subcutaneous administration of dopamine D3 receptor agonists functionally restores nigrostriatal dopamine in MPTP-treated mice. Neurotox Res. 2013;24(4):523–31.

    Article  CAS  PubMed  Google Scholar 

  119. Kim JI, Yang EJ, Lee MS, Kim YS, Huh Y, Cho IH, et al. Bee venom reduces neuroinflammation in the MPTP-induced model of Parkinson’s disease. Int J Neurosci. 2011;121(4):209–17.

    Article  CAS  PubMed  Google Scholar 

  120. Liu K, Shi N, Sun Y, Zhang T, Sun X. Therapeutic effects of rapamycin on MPTP-induced Parkinsonism in mice. Neurochem Res. 2013;38(1):201–7.

    Article  CAS  PubMed  Google Scholar 

  121. Yabuki Y, Ohizumi Y, Yokosuka A, Mimaki Y, Fukunaga K. Nobiletin treatment improves motor and cognitive deficits seen in MPTP-induced Parkinson model mice. Neuroscience. 2013;259C:126–41.

    Google Scholar 

  122. Masilamoni GJ, Bogenpohl JW, Alagille D, Delevich K, Tamagnan G, Votaw JR, et al. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain J Neurol. 2011;134(Pt 7):2057–73.

    Article  Google Scholar 

  123. Xun Z, Sowell RA, Kaufman TC, Clemmer DE. Quantitative proteomics of a presymptomatic A53T alpha-synuclein Drosophila model of Parkinson disease. Mol Cell Proteomics MCP. 2008;7(7):1191–203.

    Article  CAS  PubMed  Google Scholar 

  124. Recchia A, Rota D, Debetto P, Peroni D, Guidolin D, Negro A, et al. Generation of a alpha-synuclein-based rat model of Parkinson’s disease. Neurobiol Dis. 2008;30(1):8–18.

    Article  CAS  PubMed  Google Scholar 

  125. Betarbet R, Sherer TB, Greenamyre JT. Animal models of Parkinson’s disease. BioEssays News Rev Mol Cell Dev Biol. 2002;24(4):308–18.

    Article  CAS  Google Scholar 

  126. Schober A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 2004;318(1):215–24.

    Article  PubMed  Google Scholar 

  127. Schuler F, Casida JE. Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling. Biochim Biophys Acta. 2001;1506(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  128. Prance G. The poisons and narcotics of the Amazonian Indians. J R Coll Physicians Lond. 1999;33(4):368–76.

    CAS  PubMed  Google Scholar 

  129. Talpade DJ, Greene JG, Higgins Jr DS, Greenamyre JT. In vivo labeling of mitochondrial complex I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem. 2000;75(6):2611–21.

    Article  CAS  PubMed  Google Scholar 

  130. Alam M, Schmidt WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res. 2002;136(1):317–24.

    Article  CAS  PubMed  Google Scholar 

  131. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, et al. Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci Off J Soc Neurosci. 2003;23(34):10756–64.

    CAS  Google Scholar 

  132. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, et al. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem. 1997;69(3):1196–203.

    Article  CAS  PubMed  Google Scholar 

  133. Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem. 1998;70(1):268–75.

    Article  CAS  PubMed  Google Scholar 

  134. Tada-Oikawa S, Hiraku Y, Kawanishi M, Kawanishi S. Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis. Life Sci. 2003;73(25):3277–88.

    Article  CAS  PubMed  Google Scholar 

  135. Beal MF. Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann N Y Acad Sci. 2003;991:120–31.

    Article  CAS  PubMed  Google Scholar 

  136. Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. Toward understanding the assembly and structure of KATP channels. Physiol Rev. 1998;78(1):227–45.

    CAS  PubMed  Google Scholar 

  137. Liss B, Bruns R, Roeper J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 1999;18(4):833–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stokes AH, Hastings TG, Vrana KE. Cytotoxic and genotoxic potential of dopamine. J Neurosci Res. 1999;55(6):659–65.

    Article  CAS  PubMed  Google Scholar 

  139. Spector S, Sjoerdsma A, Udenfriend S. Blockade of endogenous norepinephrine synthesis by alpha-methyl-tyrosine, an inhibitor of tyrosine hydroxylase. J Pharmacol Exp Ther. 1965;147:86–95.

    CAS  PubMed  Google Scholar 

  140. Sakka N, Sawada H, Izumi Y, Kume T, Katsuki H, Kaneko S, et al. Dopamine is involved in selectivity of dopaminergic neuronal death by rotenone. Neuroreport. 2003;14(18):2425–8.

    Article  CAS  PubMed  Google Scholar 

  141. Biehlmaier O, Alam M, Schmidt WJ. A rat model of Parkinsonism shows depletion of dopamine in the retina. Neurochem Int. 2007;50(1):189–95.

    Article  CAS  PubMed  Google Scholar 

  142. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3(12):1301–6.

    Google Scholar 

  143. Marey-Semper I, Gelman M, Levi-Strauss M. A selective toxicity toward cultured mesencephalic dopaminergic neurons is induced by the synergistic effects of energetic metabolism impairment and NMDA receptor activation. J Neurosci Off J Soc Neurosci. 1995;15(9):5912–8.

    CAS  Google Scholar 

  144. Huang J, Liu H, Gu W, Yan Z, Xu Z, Yang Y, et al. A delivery strategy for rotenone microspheres in an animal model of Parkinson’s disease. Biomaterials. 2006;27(6):937–46.

    Article  CAS  PubMed  Google Scholar 

  145. Feng Y, Liang ZH, Wang T, Qiao X, Liu HJ, Sun SG. alpha-Synuclein redistributed and aggregated in rotenone-induced Parkinson’s disease rats. Neurosci Bull. 2006;22(5):288–93.

    CAS  PubMed  Google Scholar 

  146. Xiong N, Huang J, Zhang Z, Zhang Z, Xiong J, Liu X, et al. Stereotaxical infusion of rotenone: a reliable rodent model for Parkinson’s disease. PLoS One. 2009;4(11):e7878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, et al. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit Rev Toxicol. 2012;42(7):613–32.

    Article  CAS  PubMed  Google Scholar 

  148. Testa CM, Sherer TB, Greenamyre JT. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res. 2005;134(1):109–18.

    Article  CAS  PubMed  Google Scholar 

  149. Isenberg JS, Klaunig JE. Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicol Sci Off J Soc Toxicol. 2000;53(2):340–51.

    Article  CAS  Google Scholar 

  150. Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC. Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci Lett. 1985;62(3):389–94.

    Article  CAS  PubMed  Google Scholar 

  151. Schmidt WJ, Alam M. Controversies on new animal models of Parkinson’s disease pro and con: the rotenone model of Parkinson’s disease (PD). J Neural Transm Suppl. 2006;70:273–6.

    CAS  PubMed  Google Scholar 

  152. Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell. 2010;9(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  153. Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, et al. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One. 2010;5(1):e8762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Alam M, Schmidt WJ. L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats. Behav Brain Res. 2004;153(2):439–46.

    Article  CAS  PubMed  Google Scholar 

  155. Alam M, Mayerhofer A, Schmidt WJ. The neurobehavioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by L-DOPA. Behav Brain Res. 2004;151(1–2):117–24.

    Article  CAS  PubMed  Google Scholar 

  156. Kamalden TA, Ji D, Osborne NN. Rotenone-induced death of RGC-5 cells is caspase independent, involves the JNK and p38 pathways and is attenuated by specific green tea flavonoids. Neurochem Res. 2012;37(5):1091–101.

    Article  CAS  PubMed  Google Scholar 

  157. Hancock DB, Martin ER, Mayhew GM, Stajich JM, Jewett R, Stacy MA, et al. Pesticide exposure and risk of Parkinson’s disease: a family-based case-control study. BMC Neurol. 2008;8:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT, et al. Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromedicine. 2008;13(1):37–48.

    Article  PubMed  Google Scholar 

  159. Chan SL, Angeles DC, Tan EK. Targeting leucine-rich repeat kinase 2 in Parkinson’s disease. Expert Opin Ther Targets. 2013;17(12):1471–82.

    Article  CAS  PubMed  Google Scholar 

  160. Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009;18(R1):R48–59.

    Article  CAS  PubMed  Google Scholar 

  161. Peeraully T, Tan EK. Genetic variants in sporadic Parkinson’s disease: East vs West. Parkinsonism Relat Disord. 2012;18 Suppl 1:S63–5.

    Article  PubMed  Google Scholar 

  162. Mamais A, Raja M, Manzoni C, Dihanich S, Lees A, Moore D, et al. Divergent alpha-synuclein solubility and aggregation properties in G2019S LRRK2 Parkinson’s disease brains with Lewy Body pathology compared to idiopathic cases. Neurobiol Dis. 2013;58:183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 2008;7(7):583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. La Morgia C, Barboni P, Rizzo G, Carbonelli M, Savini G, Scaglione C, et al. Loss of temporal retinal nerve fibers in Parkinson disease: a mitochondrial pattern? Eur J Neurol Off J Eur Fed Neurol Soc. 2013;20(1):198–201.

    Google Scholar 

  165. Satue M, Garcia-Martin E, Fuertes I, Otin S, Alarcia R, Herrero R, et al. Use of Fourier-domain OCT to detect retinal nerve fiber layer degeneration in Parkinson’s disease patients. Eye (Lond). 2013;27(4):507–14.

    Article  CAS  Google Scholar 

  166. Hindle SJ, Elliott CJ. Spread of neuronal degeneration in a dopaminergic, Lrrk-G2019S model of Parkinson disease. Autophagy. 2013;9(6):936–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Polymeroulos MH, Lavedan C, Leroy E, et al. Mutation in the Alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–47.

    Google Scholar 

  168. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–8.

    Google Scholar 

  169. Gasser T, Muller-Myhsok B, Wszolek ZK, Oehlmann R, Calne DB, Bonifati V, Bereznai B, et al. A susceptibility locus for Parkinson’s disease maps to chromosome 2p13. Nature Genet. 1998;18(3):262–5.

    Google Scholar 

  170. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. Alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302(5646):841.

    Google Scholar 

  171. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH. The ubiquitin pathway in Parkinson’s disease. (Letter) Nature. 1998;395:451–2.

    Google Scholar 

  172. Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet. 2001;68(4):895–900.

    Google Scholar 

  173. Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, et al. DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci. 2003;24(3):159–60.

    Google Scholar 

  174. Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol. 2002;51(3):296–301.

    Google Scholar 

  175. Bonifati V. Genetics of Parkinson’s disease. Minerva Med. 2005;96(3):175–86.

    Google Scholar 

  176. Hampshire DJ, Roberts E, Crow Y, Bond J, Mubaidin A, Wriekat AL, et al. Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J Med Genet. 2001;38(10):680–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Francesca Cordeiro PhD, MRCP, FRCOphth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Normando, E.M., Brodie, J.T., Cordeiro, M.F. (2016). Animal Models in Neuro Ophthalmology. In: Grzybowski, A., Barboni, P. (eds) OCT in Central Nervous System Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-24085-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24085-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24083-1

  • Online ISBN: 978-3-319-24085-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics