Skip to main content

Interactions Between Insect Vectors and Propagative Plant Viruses

  • Chapter
  • First Online:
Management of Insect Pests to Agriculture

Abstract

Plant-infecting viruses that are transmitted in a persistent-propagative manner must persist and replicate in two divergent hosts, plants and insects. There are five groups of persistent-propagative plant viruses: rhabdoviruses, reoviruses, bunyaviruses, marafiviruses, and tenuiviruses. Throughout the transmission cycle of a persistent-propagative virus, there is a close association between virus and vector that is dependent on specific interactions. The –omic technologies that are now widely used for simultaneous examination of thousands of genes (genomics), mRNAs (transcriptomics), and proteins (proteomics) combined with high-throughput bioinformatic tools to extract a vast amount of information have become a popular approach to better understand virus-vector interactions. The integration of the available datasets that result from these –omic studies is contributing to the identification of host factors that are required for the viral replication cycle. Current knowledge of the vector components that function in viral infection is still limited for the majority of persistent-propagative viruses. However, the emerging information on genomes, transcriptomes, and proteomes for insect vectors of plant viruses provides unique opportunities for studying the function of genes involved in virus attachment, acquisition, and transmission in different vector species. In this chapter we discuss the major groups of plant viruses transmitted in a persistent-propagative manner, the biology of these viruses, the interactions with their vectors, and the –omic technologies applied to study these virus-vector pathosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins, S., Quadt, R., Choi, T.-J., Ahlquist, P., & German, T. (1995). An RNA-dependent RNA polymerase activity associated with virions of Tomato spotted wilt virus, a plant- and insect-infecting Bunyavirus. Virology, 207, 308–311.

    Article  CAS  PubMed  Google Scholar 

  • Adkins, S., Choi, T.-J., Israel, B. A., & Bandla, M. D. (1996). Baculovirus expression and processing of Tomato spotted wilt tospovirus glycoproteins. Phytopathology, 86, 849–855.

    Article  CAS  Google Scholar 

  • Agindotan, B. O., Gray, M. E., Hammond, R. W., & Bradley, C. A. (2012). Complete genome sequence of switchgrass mosaic virus, a member of a proposed new species in the genus Marafivirus. Archives of Virology, 157, 1825–1830.

    Article  CAS  PubMed  Google Scholar 

  • Ammar, E. D. (1975). Effect of European wheat striate mosaic, acquired by feeding on diseased plants, on biology of its planthopper vector Javesella pellucida. Annals of Applied Biology, 79, 195–202.

    Article  Google Scholar 

  • Ammar, E. D., & Hogenhout, S. A. (2008). A neurotropic route for Maize mosaic virus (Rhabdoviridae) in its planthopper vector Peregrinus maidis. Virus Research, 131, 77–85.

    Article  CAS  Google Scholar 

  • Ammar, E.-D., & Nault, L. R. (1985). Assembly and accumulation sites of Maize mosaic virus in its planthopper vector. Phytopathology, 84, 1054–1060.

    Article  Google Scholar 

  • Ammar, E., & Nault, L. R. (2002). Virus transmission by leafhoppers, planthoppers and treehoppers (Auchenorrhyncha, Homoptera). Advances in Botanical Research, 36, 141–167.

    Article  Google Scholar 

  • Ammar, E. D., & Peterschmitt, M. (2004). Maize yellow stripe. In H. Lapierre & P.-A. Signoret (Eds.), Viruses and virus diseases of Poaceae (Graminae) (pp. 682–685). Versailles: INRA Editions.

    Google Scholar 

  • Ammar, E. D., Gomez-Luengo, R. G., Gordon, D. T., & Hogenhout, S. A. (2005). Characterization of Maize Iranian mosaic virus and comparison with Hawaiian and other isolates of Maize mosaic virus (Rhabdoviridae). Journal of Phytopathology, 153, 129–136.

    Article  Google Scholar 

  • Ammar, E. D., Khlifa, E. A., Mahmoud, A., Abol-Ela, S. E., & Peterschmitt, M. (2007). Evidence for multiplication of the leafhopper-borne Maize yellow stripe virus in its vector using ELISA and dot-blot hybridization. Archives of Virology, 152, 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Ammar, E. D., Tsai, C. W., Whitfield, A. E., Redinbaugh, M. G., & Hogenhout, S. A. (2009). Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts. Annual Review of Entomology, 54, 447–468.

    Article  CAS  Google Scholar 

  • Argüello-Caro, E. B., Maroniche, G. A., Dumón, A. D., Sagadín, M. B., Del Vas, M., & Truol, G. (2013). High viral load in the planthopper vector Delphacodes kuscheli (Hemiptera: Delphacidae) is associated with successful transmission of Mal de Río Cuarto Virus. Annals of the Entomological Society of America, 106, 93–99.

    Article  Google Scholar 

  • Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I., & Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40, W597–W603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attoui, H., Jaafar, F. M., Belhouchet, M., de Micco, P., de Lamballerie, X., & Brussard, C. P. (2006). Micromonas pusilla reovirus: A new member of the family Reoviridaea assigned to a novel proposed genus (Mimoreovirus). Journal of General Virology, 87, 1375–1383.

    Article  CAS  PubMed  Google Scholar 

  • Attoui, H., Becnel, J., Belaganahalli, S., Bergoin, M., Brussaard, C. P., Chappell, J. D., Ciarlet, M., del Vas, M., Dermody, T. S., Dormitzer, P. R., Duncan, R., Fang, Q., Graham, R., Guglielmi, K. M., Harding, R. M., Hillman, B., Makkay, A., Marzachi, A. C., Matthijnssens, J., Mertens, P. P. C., Milne, R. G., Mohd Jaafar, F., Mori, H., Noordeloos, A. A., Omura, T., Patton, J. T., Rao, S., Maan, M., Stoltz, D., Suzuki, N., Upadhyaya, N. M., Wei, C., & Zhou, H. (2012). Part II: The viruses – The double stranded RNA viruses – Family Reoviridae. In A. M. Q. King, M. J. Adams, E. B. Carstens, & E. J. Lefkowitz (Eds.), Virus taxonomy ninth report of the international committee on taxonomy of viruses (pp. 541–637). USA: Academic Press.

    Google Scholar 

  • Avila, Y., Stavisky, J., Hague, S., Funderburk, J., Reitz, S., & Momol, T. (2006). Evaluation of Frankliniella bispinosa (Thysanoptera: Thripidae) as a vector of the Tomato spotted wilt virus in pepper. Florida Entomologist, 89, 204–207.

    Article  Google Scholar 

  • Badillo-Vargas, I. E., Rotenberg, D., Schneweis, D., Hiromasa, Y., Tomich, J. M., & Whitfield, A. E. (2012). Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to Tomato spotted wilt virus infection. Journal of Virology, 86, 8793–8809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badillo-Vargas, I., Rotenberg, D., Schneweis, B. A., & Whitfield, A. E. (2015). RNA interference tools for the western flower thrips, Frankliniella occidentalis. Journal of Insect Physiology, 76, 36–46.

    Article  CAS  PubMed  Google Scholar 

  • Bandla, M. D., Campbell, L. R., Ullman, D. E., & Sherwood, J. L. (1998). Interaction of Tomato spotted wilt tospovirus (TSWV) glycoproteins with a thrips midgut protein, a potential cellular receptor for TSWV. Phytopathology, 88, 98–104.

    Article  CAS  PubMed  Google Scholar 

  • Bao, Y., Wang, Y., Wu, W., Zhao, D., Xue, J., Zhang, B., Shen, Z., & Zhang, C. (2012). De novo intestine-specific transcriptome of the brown planthopper Nilaparvata lugens revealed potential functions in digestion, detoxification and immune response. Genomics, 99, 256–264.

    Article  CAS  PubMed  Google Scholar 

  • Bao, Y., Qu, L., Zhao, D., Chen, L., Jin, H., Xu, L., Cheng, J., & Zhang, C. (2013). The genome- and transcriptome-wide analysis of innate immunity in the brown planthopper, Nilaparvata lugens. BMC Genomics, 14, 160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, Y., Qin, X., Yu, B., Chen, L., Wang, Z., & Zhang, C. (2014). Genomic insights into the serine protease gene family and expression profile analysis in the planthopper, Nilaparvata lugens. BMC Genomics, 15, 507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barandoc-Alviar, K., Rotenberg, D., & Whitfield, A. E. (2014). Identifying novel interacting proteins of Maize mosaic rhabdovirus glycoprotein using the split-ubiquitin membrane-based yeast two hybrid system. Phytopathology, 104(Suppl 3), S3.11.

    Google Scholar 

  • Barbier, P., Takahashi, M., Nakamura, I., Toriyama, S., & Ishihama, A. (1992). Solubilization and promoter analysis of RNA-polymerase from Rice stripe virus. Journal of Virology, 66, 6171–6174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bass, C., Hebsgaard, M., & Hughes, J. (2012). Genomic resources for the brown planthopper, Nilaparvata lugens: Transcriptome pyrosequencing and microarray design. Insect Science, 19, 1–12.

    Article  CAS  Google Scholar 

  • Bearzotti, M., Delmas, B., Lamoureux, A., Loustau, A., Chilmonczyk, S., & Bremont, M. (1999). Fish rhabdovirus cell entry is mediated by fibronectin. Journal of Virology, 73, 7703–7709.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Black, L. M. (1943). Genetic variation ion the clover leafhopper’s ability to transmit potato yellow-dwarf virus. Genetics, 28, 200–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Black, L. M. (1979). Vector cell monolayers and plant viruses. Advances in Virus Research, 25, 191–271.

    Article  CAS  PubMed  Google Scholar 

  • Bourhy, H., Cowley, J. A., Larrous, F., Holmes, E. C., & Walker, P. J. (2005). Phylogenetic relationships among rhabdoviruses inferred using the L polymerase gene. Journal of General Virology, 86, 2849–2858.

    Article  CAS  PubMed  Google Scholar 

  • Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., MacFarlane, S., Peters, D., Susi, P., & Torrance, L. (2013). Status and prospects of plant virus control through interference with vector transmission. Annual Review of Phytopathology, 51, 177.

    Article  CAS  PubMed  Google Scholar 

  • Brcak, J. (1979). Leafhopper and planthopper vectors of plant disease agents in central and southern Europe. In K. Maramorosch & K. F. Harris (Eds.), Leafhopper vectors and plant disease agents (pp. 97–154). New York: Academic Press.

    Chapter  Google Scholar 

  • Brittlebank, C. C. (1919). Tomato diseases. Journal of Agricultural, 17, 231–235.

    Google Scholar 

  • Bucher, E., Sijen, T., de Haan, P., Goldbach, R., & Prins, M. (2003). Negative-strand Tospoviruses and Tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. Journal of Virology, 77, 1329–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassone, B. J., Wijeratne, S., Michel, A. P., Stewart, L. R., Chen, Y., Yan, P., & Redinbaugh, M. G. (2014). Virus-independent and common transcriptome responses of leafhopper vectors feeding on maize infected with semi-persistently and persistent propagatively transmitted viruses. BMC Genomics, 15, 133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Castello, J. D., Rogers, S. O., Bachand, G. D., Fillhart, R. C., Murray, J. S., Weidemann, K., Bachand, M., & Almond, M. A. (2000). Detection and partial characterization of tenuiviruses from black spruce. Plant Diseases, 84, 143–147.

    Article  CAS  Google Scholar 

  • Chatzivassiliou, E. K., Peters, D., & Katis, N. I. (2002). The efficiency by which Thrips tabaci populations transmit Tomato spotted wilt virus depends on their host preference and reproductive strategy. Phytopathology, 92, 603–609.

    Article  PubMed  Google Scholar 

  • Chen, C. C., & Chiu, R. J. (1989). Transmission of Rice wilted stunt virus by the planthopper (Nilaparvata lugens). Bulletin of Taichung District Agricultural Improvement Station, 23, 3–10.

    Google Scholar 

  • Chen, C. C., Chao, C. H., & Chiu, R. J. (1996). Studies on host range, transmission and electron microscopy of Peanut chlorotic fan-spot virus in Taiwan. Bulletin of Taichung District Agricultural Improvement Station, 52, 59–68.

    Google Scholar 

  • Chen, C. C., Chen, T. C., Lin, Y. H., Yeh, S. D., & Hsu, H. T. (2005). A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to Watermelon silver mottle virus. Plant Diseases, 89, 440–445.

    Article  CAS  Google Scholar 

  • Chen, H., Chen, Q., Omura, T., Uehara-Ichiki, T., & Wei, T. (2011). Sequential infection of RIce dwarf virus in the internal organs of its insect vector after ingestion of virus. Virus Research, 160, 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Cassone, B. J., Bai, X., Redinbaugh, M. G., & Michel, A. P. (2012). Transcriptome of the plant virus vector Graminella nigrifrons and the molecular interactions of Maize fine streak rhabdovirus transmission. PLoS One, 7, e40613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chomchan, P., Li, S. F., & Shirako, Y. (2003). Rice grassy stunt tenuivirus nonstructural protein p5 interacts with itself to form oligomeric complexes in vitro and in vivo. Journal of Virology, 77, 769–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, F. H., Chao, C. H., Peng, Y. C., Lin, S. S., Chen, C. C., & Yeh, S. D. (2001). Serological and molecular characterization of Peanut chlorotic fan-spot virus, a new species of the genus Tospovirus. Phytopathology, 91, 856–863.

    Article  CAS  PubMed  Google Scholar 

  • Ciuffo, M., Tavella, L., Pacifico, D., Masenga, V., & Turina, M. (2008). A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum convolvulus). Archives of Virology, 153, 2059–2068.

    Article  CAS  PubMed  Google Scholar 

  • Ciuffo, M., Kurowski, C., Vivoda, E., Copes, B., Masenga, V., Falk, B. W., & Turina, M. (2009). A new Tospovirus sp. in cucurbit crops in Mexico. Plant Diseases, 93, 467–474.

    Article  CAS  Google Scholar 

  • Ciuffo, M., Mautino, G. C., Bosco, L., Turina, M., & Tavella, L. (2010). Identification of Dictyothrips betae as the vector of Polygonum ring spot virus. Annals of Applied Biology, 157, 299–307.

    Article  CAS  Google Scholar 

  • Cortes, I., Livieratos, I. C., Derks, A., Peters, D., & Kormelink, R. (1998). Molecular and serological characterization of Iris yellow spot virus, a new and distinct Tospovirus species. Phytopathology, 88, 1276–1282.

    Article  CAS  PubMed  Google Scholar 

  • Cortez, I., Saaijer, J., Wongjkaew, K. S., Pereira, A. M., Goldbach, R., Peters, D., & Kormelink, R. (2001). Identification and characterization of a novel tospovirus species using a new RT-PCR approach. Archives of Virology, 146, 265–278.

    Article  CAS  PubMed  Google Scholar 

  • De Angelis, J. D., Sether, D. M., & Rossignol, P. A. (1993). Survival, development, and reproduction in western flower thrips (Thysanoptera: Thripidae) exposed to Impatiens necrotic virus. Environmental Entomology, 22, 1308–1312.

    Article  Google Scholar 

  • de Assis Filho, F. M., Naidu, R. A., Deom, C. M., & Sherwood, J. L. (2002). Dynamics of Tomato spotted wilt virus replication in the alimentary canal of two thrips species. Phytopathology, 92, 729–733.

    Article  PubMed  Google Scholar 

  • de Assis Filho, F. M., Deom, C. M., & Sherwood, J. L. (2004). Acquisition of Tomato spotted wilt virus by adults of two thrips species. Phytopathology, 94, 333–336.

    Article  PubMed  Google Scholar 

  • de Avila, A. C., Huguenot, C., Resende, R. D., Kitajima, E. W., Goldbach, R. W., & Peters, D. (1990). Serological differentiation of 20 isolates of Tomato spotted wilt virus. Journal of General Virology, 71, 2801–2807.

    Article  PubMed  Google Scholar 

  • de Avila, A. C., De Haan, P., Kitajima, E. W., Kormelink, R., Resende, R. D., Goldbach, R. W., & Peters, D. (1992). Characterization of a distinct isolate of Tomato spotted wilt virus (TSWV) from Impatiens Sp. in the Netherlands. Journal of Phytopathology, 134, 133–151.

    Article  Google Scholar 

  • de Avila, A. C., De Haan, P., Kormelink, R., Resende, R. D., Goldbach, R. W., & Peters, D. (1993). Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. Journal of General Virology, 74, 153–159.

    Article  PubMed  Google Scholar 

  • de Borbon, C. M., Gracia, O., & De Santis, L. (1999). Survey of Thysanoptera occurring on vegetable crops as potential Tospovirus vectors in Mendoza, Argentina. Revista De Sociedad Entomologica Argentina, 58, 59–66.

    Google Scholar 

  • de Haan, P., Wagemakers, L., Peters, D., & Goldbach, R. (1990). The S RNA segment of Tomato spotted wilt virus has an ambisense character. Journal of General Virology, 71, 1001–1007.

    Article  PubMed  Google Scholar 

  • de Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., & Goldbach, R. (1991). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. Journal of General Virology, 72, 2207–2216.

    Article  PubMed  Google Scholar 

  • de Miranda, J., Hernandez, M., Hull, R., & Espinoza, A. M. (1994). Sequence analysis of Rice hoja blanca virus RNA-3. Journal of General Virology, 75, 2127–2132.

    Article  PubMed  Google Scholar 

  • de Miranda, J. R., Munoz, M., Madriz, J., Wu, R., & Espinoza, A. M. (1996a). Sequence of Echinochloa hoja blanca tenuivirus RNA-3. Virus Genes, 13, 65–68.

    Article  PubMed  Google Scholar 

  • de Miranda, J. R., Munoz, M., Wu, R., & Espinoza, A. M. (1996b). Sequence of Echinochloa hoja blanca tenuivirus RNA-5. Virus Genes, 12, 131–134.

    Article  PubMed  Google Scholar 

  • de Miranda, J. R., Munoz, M., Wu, R., Hull, R., & Espinoza, A. M. (1996c). Sequence of Rice hoja blanca tenuivirus RNA-2. Virus Genes, 12, 231–237.

    Article  PubMed  Google Scholar 

  • de Oliveira, A. S., Machado-Bertran, A. G., Inoue-Nagata, A. K., Nagata, T., Kitajima, E. W., & Resende, R. O. (2011). An RNA-dependent RNA-polymerase gene of a distinct Brazilian tospovirus. Virus Genes, 43, 385–389.

    Article  CAS  PubMed  Google Scholar 

  • Deng, J., Li, S., Hong, J., Ji, Y., & Zhou, Y. (2013). Investigation on subcellular localization of Rice stripe virus in its vector small brown planthopper by electron microscopy. Virology Journal, 10, 310.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietzgen, R. G., Kuhn, J. H., Clawson, A. N., Freitas-Astua, J., Goodin, M. M., Kitajima, E. W., Wetzel, T., & Whitfield, A. E. (2013). Dichoravirus: A proposed new genus for Brevipalpus mite-transmitted, nuclear, bacilliform, bipartite, negative-strand RNA plant virus. Archives of Virology, 159, 607–619.

    Article  PubMed  CAS  Google Scholar 

  • Dong, J. H., Cheng, X. F., Yin, Y. Y., Fang, Q., Ding, M., Li, T. T., Zhang, L. Z., Su, X. X., McBeath, J. H., & Zhang, Z. K. (2008). Characterization of Tomato zonate spot virus, a new tospovirus in China. Archives of Virology, 153, 855–864.

    Article  CAS  PubMed  Google Scholar 

  • Dong, J. H., Yin, Y. Y., Fang, Q., Mcbeath, J. H., & Zhang, Z. K. (2013). A new tospovirus causing chlorotic ringspot on Hippeastrum sp. in China. Virus Genes, 46, 567–570.

    Article  CAS  PubMed  Google Scholar 

  • Duarte, L. M. L., Rivas, E. B., Alexandre, M. A. V., de Avila, A. C., Nagata, T., & Chagas, C. M. (1995). Chrysanthemum stem necrosis caused by a possible novel tospovirus. Journal of Phytopathology, 143, 569–571.

    Article  Google Scholar 

  • Duijsings, D., Kormelink, R., & Goldbach, R. (1999). Alfalfa mosaic virus RNAs serve as cap donors for Tomato spotted wilt virus transcription during coinfection of Nicotiana benthamiana. Journal of Virology, 73, 5172–5175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duijsings, D., Kormelink, R., & Goldbach, R. (2001). In vivo analysis of the TSWV capsnatching mechanism: Single base complementarity and primer length requirements. EMBO Journal, 20, 2545–2552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, M. C., Zhijun, Z., & Weiland, J. J. (1997). Oat blue dwarf marafivirus resembles the tymoviruses in sequence, genome organization, and expression strategy. Virology, 232, 217–229.

    Article  CAS  PubMed  Google Scholar 

  • Estabrook, E. M., Suyenaga, K., Tsai, J. H., & Falk, B. W. (1996). Maize stripe tenuivirus RNA2 transcripts in plant and insect hosts and analysis of pvc2, a protein similar to the Phlebovirus virion membrane glycoproteins. Virus Genes, 12, 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Evans, J. D., Brown, S. J., Hackett, K. J., Robinson, G., Richards, S., Lawson, D., Elsik, C., Coddington, J., Edwards, O., Emrich, S., Gabaldon, T., Goldsmith, M., Hanes, G., Misof, B., Munoz-Torres, M., Niehuis, O., Papanicolaou, A., Pfrender, M., Poelchau, M., Purcell-Miramontes, M., Robertson, H. M., Ryder, O., Tagu, D., Torres, T., Zdobnov, E., Zhang, G., Zhou, X., & i5K Consortium. (2013). The i5K initiative: Advancing arthropod genomics for knowledge, human health, agriculture, and the environment i5K CONSORTIUM. Journal of Heredity, 104, 595–600.

    Article  Google Scholar 

  • Falk, B. W., & Tsai, J. H. (1984). Identification of single-stranded and double-stranded RNAs associated with Maize stripe virus. Phytopathology, 74, 909–915.

    Article  CAS  Google Scholar 

  • Falk, B. W., & Tsai, J. H. (1998). Biology and molecular biology of viruses in the genus Tenuivirus. Annual Review of Phytopathology, 36, 139–163.

    Article  CAS  PubMed  Google Scholar 

  • Falk, B. W., Tsai, J. H., & Lommel, S. A. (1987). Differences in levels of detection for the Maize stripe virus capsid and major non-capsid proteins in plant and insect hosts. Journal of General Virology, 68, 1801–1811.

    Article  CAS  Google Scholar 

  • Fukushi, T. (1933). Transmission of the virus through the eggs of an insect vector. Proceedings of the Imperial Academy Tokyo, 9, 457–460.

    Google Scholar 

  • Fukushi, T. (1969). Relationships between propagative rice viruses and their vectors. In K. Maramorosch (Ed.), Viruses, vectors and vegetation (pp. 279–301). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Gamez, R., & Leon, P. (1988). Maize rayado fino and related viruses. In R. Koenig (Ed.), The plant viruses (pp. 213–233). New York: Plenum Press.

    Chapter  Google Scholar 

  • Garcia, S., Billecocq, A., Crance, J. M., Prins, M., Garin, D., & Bouloy, M. (2006). Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. Journal of General Virology, 87, 1985–1989.

    Article  CAS  PubMed  Google Scholar 

  • Garry, C., & Garry, R. (2004). Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes). Theoretical Biology and Medical Modelling, 1, 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gastka, M., Horvath, J., & Lentz, T. L. (1996). Rabies virus binding to the nicotinic acetylcholine receptor subunit demonstrated by virus overlay protein binding assay. Journal of General Virology, 77, 2437–2440.

    Article  CAS  PubMed  Google Scholar 

  • German, T. L., Ullman, D. E., & Moyer, J. W. (1992). Tospoviruses: Diagnosis, molecular biology, phylogeny, and vector relationships. Annual Review of Phytopathology, 30, 315–348.

    Article  CAS  PubMed  Google Scholar 

  • Ghotbi, T., Shahraeen, N., & Winter, S. (2005). Occurrence of tospoviruses in ornamental and weed species in Markazi and Tehran provinces in Iran. Plant Diseases, 89, 425–429.

    Article  Google Scholar 

  • Gingery, R. E. (1988). The rice stripe virus group. In R. G. Milne (Ed.), The plant viruses (pp. 297–329). Springer: New York.

    Google Scholar 

  • Gingery, R. E., Nault, L. R., & Bradfute, O. E. (1981). Maize stripe virus: Characteristics of a new virus class. Virology, 182, 99–108.

    Article  Google Scholar 

  • Gonzalez-Scarano, F., & Nathanson, N. (1996). Bunyaviridae. In B. N. Fields, D. M. Knipe, & P. M. Howley (Eds.), Fields Virology (pp. 1473–1504). Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Gopal, K., Reddy, M. K., Reddy, D. V. R., & Muniyappa, V. (2010). Transmission of Peanut yellow spot virus (PYSV) by thrips, Scirtothrips dorsalis Hood in groundnut. Archives of Phytopathology and Plant Protection, 43, 421–429.

    Article  Google Scholar 

  • Gray, S. M., & Banerjee, N. (1999). Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews, 63, 128–148.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond, R. W., & Ramirez, P. (2001). Molecular characterization of the genome of Maize rayado fino virus, the type member of the genus Marafivirus. Virology, 282, 338–347.

    Article  CAS  PubMed  Google Scholar 

  • Hassani-Mehraban, A., Botermans, M., Verhoeven, J. T. J., Meekes, E., Saaijer, J., Peters, D., Goldbach, R., & Kormelink, R. (2010). A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia. Archives of Virology, 155, 423–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmes, H., Lakatos, L., Goldbach, R., Burgyan, J., & Prins, M. (2007). The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. RNA, 13, 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermanns, K., Zirkel, F., Kurth, A., Drosten, C., & Junglen, S. (2014). Cimodo virus belongs to a novel lineage of reovirus isolated from African mosquitoes. Journal of General Virology, 95, 905–909.

    Article  CAS  PubMed  Google Scholar 

  • Heydarnejad, J., Izadpanah, K., Hunter, F. R., & Gooding, M. J. (2007). Transmission properties of Iranian wheat stripe virus. Australasian Plant Pathology, 36, 354–357.

    Article  Google Scholar 

  • Hibino, H. (1996). Biology and epidemiology of rice viruses. Annual Review of Phytopathology, 34, 249–274.

    Article  CAS  PubMed  Google Scholar 

  • Hibino, H., Usugi, T., Omura, T., Tsuchizaki, T., Shohara, K., & Iwasaki, M. (1985). Rice grassy stunt virus – A planthopper-borne circular filament virus. Phytopathology, 75, 894–899.

    Article  Google Scholar 

  • Hill, C. L., Booth, T. F., Prasad, B. V. V., Grimes, J. M., Mertens, P., Sutton, G. C., & Stuart, D. I. (1999). The structure of a cypovirus and the functional organization of dsRNA viruses. Nature Structural and Molecular Biology, 6, 565–568.

    Article  CAS  Google Scholar 

  • Hirao, J., Oya, S., & Inoue, H. (1987). Transmission of rice grassy stunt virus (RGSV) by the brown planthopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae). Bulletin of the Kyushu National Agricultural Experiment Station, 24, 307–337.

    Google Scholar 

  • Hogenhout, S. A., Ammar, E. D., Whitfield, A. E., & Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327–359.

    Article  CAS  PubMed  Google Scholar 

  • Honda, K., Wei, T., Hagiwara, K., Higashi, T., Kimura, I., Akutsu, K., & Omura, T. (2007). Retention of Rice dwarf virus by descendants of pairs of viruliferous vector insects after rearing for 6 Years. Phytopathology, 97, 712–716.

    Article  PubMed  Google Scholar 

  • Huang, Y. W., Geng, Y. F., Ying, X. B., Chen, C. Y., & Fang, R. X. (2005). Identification of a movement protein of rice yellow stunt rhabdovirus. Journal of Virology, 79, 2108–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huiet, L., Klaassen, V., Tsai, J. H., & Falk, B. W. (1990). Identification and sequence-analysis of the Maize Stripe Virus major noncapsid protein gene. Virology, 179, 862–866.

    Article  CAS  PubMed  Google Scholar 

  • Huiet, L., Tsai, J. H., & Falk, B. W. (1992). Complete sequence of Maize Stripe Virus Rna4 and mapping of its subgenomic RNAs. Journal of General Virology, 73, 1603–1607.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, W. B., & Ullman, D. E. (1992). Anatomy and ultrastructure of the piercing-sucking mouthparts and paraglossal sensilla of Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae). International Journal of Insect Morphology and Embryology, 21, 17–35.

    Article  Google Scholar 

  • Huo, Y., Wenwen, L., Fujie, Z., Xiaoying, C., Li, L., Qifei, L., Yijun, Z., Taiyun, W., Rongxiang, F., & Wang, X. (2014). Transovarial transmission of a plant virus is mediated by vitellogenin of its insect vector. PLoS Pathogen, 10, e1003949.

    Article  CAS  Google Scholar 

  • Inoue, H. (1979). Transmission efficiency of rice transitory yellowing virus by the green rice leafhoppers, Nephotettix spp. (Hemiptera: Cicadellidae). Applied Entomology and Zoology, 14, 123–125.

    Google Scholar 

  • Ishikawa, K., Omura, T., & Hibino, H. (1989). Morphological-characteristics of Rice Stripe Virus. Journal of General Virology, 70, 3465–3468.

    Article  Google Scholar 

  • Iwaki, M., Honda, Y., Hanada, K., Tochihara, H., Yonaha, T., Hokama, K., & Yokoyama, T. (1984). Silver mottle disease of watermelon caused by Tomato spotted wilt virus. Plant Diseases, 68, 1006–1008.

    Article  Google Scholar 

  • Izadpanah, K., Zhang, Y. P., Daubert, S., & Rowhani, A. (2002). Sequence of the coat protein gene of Bermuda grass etched-line virus and of the adjacent “marafibox” motif. Virus Genes, 24, 131–134.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, A. O., Goodin, M., Moreno, I., Johnson, J., & Lawrence, D. M. (1999). Rhabdoviruses (Rhabdoviridae): Plant rhabdoviruses. In A. Granoff & R. G. Webster (Eds.), Encyclopedia of virology (pp. 1531–1541). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Jackson, A. O., Dietxgen, R. G., Goodin, M. M., Bragg, J. N., & Deng, M. (2005). Biology of plant rhabdoviruses. Annual Review of Phytopathology, 43, 623–660.

    Article  CAS  PubMed  Google Scholar 

  • Jain, R. K., Pappu, H. R., Pappu, S. S., Krishna Reddy, M., & Vani, A. (1998). Watermelon bud necrosis tospovirus is a distinct virus species belonging to serogroup IV. Archives of Virology, 143, 1637–1644.

    Article  CAS  PubMed  Google Scholar 

  • Jennings, P. R., & Pineda, A. T. (1971). The effect of the Hoja blanca virus on its insect vector. Phytopathology, 61, 142–143.

    Article  Google Scholar 

  • Ji, R., Yu, H., Fu, Q., Chen, H., Ye, W., Li, S., & Lou, Y. (2013). Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. PLoS One, 8, e79612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia, D., Chen, H., Zheng, H., Chen, Q., Liu, Q., Xie, L., Wu, Z., & Wei, T. (2012). Development of an insect vector cell culture and RNA interference system to investigate the functional role of Fijivirus replication protein. Journal of Virology, 86, 5800–5807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannsdottir, H. K., Mancini, R., Kartenbeck, J., Amato, L., & Helenius, A. (2009). Host cell factors and functions involved in Vesicular stomatitis virus entry. Journal of Virology, 83, 440–453.

    Article  CAS  PubMed  Google Scholar 

  • Kakutani, T., Hayano, Y., Hayashi, T., & Minobe, Y. (1990). Ambisense segment-4 of Rice Stripe Virus – Possible evolutionary relationship with Phleboviruses and Uukuviruses (Bunyaviridae). Journal of General Virology, 71, 1427–1432.

    Article  CAS  PubMed  Google Scholar 

  • Kakutani, T., Hayano, Y., Hayashi, T., & Minobe, Y. (1991). Ambisense segment-3 of Rice Stripe Virus – The 1st Instance of a virus containing 2 ambisense segments. Journal of General Virology, 72, 465–468.

    Article  CAS  PubMed  Google Scholar 

  • Kato, K., Hanada, K., & Kameya-Iwaki, M. (2000). Melon yellow spot virus: A distinct species of the genus Tospovirus isolated from melon. Phytopathology, 90, 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Kikkert, M., Meurs, C., van de Wetering, F., Dorfmuller, S., Peters, D., Kormelink, R., & Goldbach, R. (1998). Binding of Tomato spotted wilt virus to a 94-kDa thrips protein. Phytopathology, 88, 63–69.

    Article  CAS  PubMed  Google Scholar 

  • Kikkert, M., Van Lent, J., Storms, M., Bodegom, P., Kormelink, R., & Goldbach, R. (1999). Tomato spotted wilt virus particle morphogenesis in plant cells. Journal of Virology, 73, 2288–2297.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kikkert, M., Verschoor, A., Kormelink, R., Rottier, P., & Goldbach, R. (2001). Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. Journal of Virology, 75, 1004–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo, H., Chiba, S., Andika, I. B., Maruyama, K., Tamda, T., & Suzuki, N. (2013). Orchid Fleck Virus structural proteins N and P form intranuclear viroplasm-like structures in the absence of viral infection. Journal of Virology, 87, 7423–7434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi, H., Noda, H., Tamura, Y., & Hattori, M. (2009). Proteomic analysis of the salivary glands of the rice brown planthopper, Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Applied Entomology and Zoology, 44, 525–534.

    Article  CAS  Google Scholar 

  • Kormelink, R., de Haan, P., Meurs, C., Peters, D., & Goldbach, R. (1992). The nucleotide sequence of the M RNA segment of Tomato spotted wilt virus, a Bunyavirus with two ambisense RNA segments. Journal of General Virology, 73, 2795–2804.

    Article  CAS  PubMed  Google Scholar 

  • Kormelink, R., Storms, M., Van Lent, J., Peters, D., & Goldbach, R. (1994). Expression and subcellular location of the NSm protein of Tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology, 200, 56–65.

    Article  CAS  PubMed  Google Scholar 

  • Kormelink, R., Garcia, M. L., Goodin, M., Sasaya, T., & Haenni, A.-L. (2011). Negative-strand RNA viruses: The plant-infecting counterparts. Virus Research, 162, 184–202.

    Article  CAS  PubMed  Google Scholar 

  • Lastra, R. (1985). Mechanical transmission, purification and properties of an isolate of Maize Stripe Virus from Venezuela. Journal of Phytopathology, 114, 168–179.

    Article  CAS  Google Scholar 

  • Lewandowski, D. J., & Adkins, S. (2005). The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology, 342, 26–37.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Lewandowski, D. J., Hilf, M. E., & Adkins, S. (2009). Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology, 390, 110–121.

    Article  CAS  PubMed  Google Scholar 

  • Lindord, M. B. (1932). Transmission of the Pineapple yellow-spot virus by Thrips tabaci. Phytopathology, 22, 301–324.

    Google Scholar 

  • Liu, Y., Jia, D., Chen, H., Chen, Q., Xie, L., Wu, Z., & Wei, T. (2011). The P7-1 protein of Southern rice black-streaked dwarf virus, a fijivirus, induces the formation of tubular structures in insect cells. Archives of Virology, 156, 1729–1736.

    Article  CAS  PubMed  Google Scholar 

  • Louie, R. (1995). Vascular puncture of Maize Kernels for the mechanical transmission of Maize White Line Mosaic-Virus and other viruses of Maize. Phytopathology, 85, 139–143.

    Article  Google Scholar 

  • Lu, D., Wu, M., Pu, J., Feng, A., Zhang, Q., & Han, Z. (2013). A functional study of two dsRNA binding protein genes in Laodelphax striatellus. Pest Management Science, 69, 1034–1039.

    Article  CAS  PubMed  Google Scholar 

  • Maccheroni, W., Alegria, M. C., Greggio, C. C., Piazza, J. P., Kamla, R. F., Zacharias, P. R. A., Bar-Joseph, M., Kitajima, E. W., Assumpção, L. C., Camarotte, G., Cardozo, J., Casagrande, E. C., Ferrari, F., Franco, S. F., Giachetto, P. F., Girasol, A., Jordão, H., Jr., Silva, V. H. A., Souza, L. C. A., Aguilar-Vildoso, C. I., Zanca, A. S., Arruda, P., Kitajima, J. P., Reinach, F. C., Ferro, J. A., & da Silva, A. C. R. (2005). Identification and genomic characterization of a new virus (Tymoviridae family) associated with citrus sudden death disease. Journal of Virology, 79, 3028–3037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoud, A., Royer, M., Granier, M., Ammar, E.-D., Thouvenel, J.-C., & Peterschmitt, M. (2007). Evidence for a segmented genome and partial nucleotide sequences of maize yellow stripe virus, a proposed new tenuivirus. Archives of Virology, 152, 1757–1762.

    Article  CAS  Google Scholar 

  • Mann, K. S., & Dietzgen, R. G. (2014). Plant rhabdoviruses: New insights and research needs in the interplay of negative-strand RNA viruses with plant and insect hosts. Archives of Virology, 159, 1889–1900.

    Article  CAS  PubMed  Google Scholar 

  • Mar, T. T., Wenwen, L., & Xifeng, W. (2014). Proteomic analysis of interaction between P7-1 of Southern rice black-streaked dwarf virus and the insect vector reveals diverse insect proteins involved in successful transmission. Journal of Proteomics, 102, 83–97.

    Article  CAS  PubMed  Google Scholar 

  • Maroniche, G. A., Mongelli, V. C., Llauger, G., Alfonso, V., Taboga, O., & del Vas, M. (2012). In vivo subcellular localization of Mal de Río Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions. Virology, 430, 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Marzachi, C., Boccardo, G., Milne, R., Isogai, M., & Uyeda, I. (1995). Genome structure and variability of Fijiviruses. Seminars in Virology, 6, 103–108.

    Article  CAS  Google Scholar 

  • Matthews, R. E. F. (1982). Classification and nomenclature of viruses. Intervirology, 17, 1–199.

    Article  Google Scholar 

  • McMichael, L. A., Persley, D. M., & Thomas, J. E. (2002). A new tospovirus serogroup IV species infecting capsicum and tomato in Queensland. Australasian Plant Pathology, 31, 231–239.

    Article  Google Scholar 

  • Meena, R. L., Venkatesan, T. R. S., & Mohankumar, S. (2005). Molecular characterization of tospovirus transmitting thrips populations from India. American Journal of Biochemistry and Biotechnology, 1, 167–172.

    Article  CAS  Google Scholar 

  • Meng, J. R., Liu, P. P., Zou, C. W., Wang, Z. Q., Liao, Y. M., Cai, J. H., Qin, B. X., & Chen, B. S. (2013). First report of a Tospovirus in mulberry. Plant Disease, 97, 1001.

    Article  Google Scholar 

  • Mertens, P. P. C., Attoui, H., Duncan, R., & Dermody, T. S. (2005). Reoviridae. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, & L. A. Ball (Eds.), Virus taxonomy: Eight report of the international committee on taxonomy of viruses (pp. 447–454). London: Elsevier/Academic Press.

    Google Scholar 

  • Milne, R. G., del Vas, M., Harding, R. M., Marzachi, R., & Mertens, P. P. C. (2005). Fijivirus. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, & L. A. Ball (Eds.), Virus taxonomy: Eight report of the international committee on taxonomy of viruses (pp. 534–542). London: Elsevier/Academic Press.

    Google Scholar 

  • Misari, S. M., & Sylvester, E. S. (1983). Coriander feathery red-vein virus, a propagative plant rhabdovirus and its transmission by the aphid Hyadaphis foeniculi Passerini. Hilgardia, 51, 1–38.

    Article  Google Scholar 

  • Montero-Astúa, M. (2012). Unveiling and blocking the interaction between Tomato spotted wilt virus and its insect vector, Frankliniella occidentalis (Doctoral dissertation). Kansas State University in Manhattan.

    Google Scholar 

  • Montero-Astúa, M., Rotenberg, D., Leach-Kieffaber, A., Schneweis, B. A., Park, S., Park, J. K., German, T. L., & Whitfield, A. E. (2014). Disruption of vector transmission by a plant-expressed viral glycoprotein. Molecular Plant-Microbe Interactions Journal, 27, 296–304.

    Article  CAS  Google Scholar 

  • Montero-Astúa, M., Stafford, C., Badillo-Vargas, I., Rotenberg, D., Ullman, D. E., & Whitfield, A. E. (2011). Tospovirus -thrips biology. In J. K. Brown, (Ed.), Vector-mediated transmission of plant pathogens. St. Paul, MN: APS Press.

    Google Scholar 

  • Morales, F. J., & Niessen, A. I. (1983). Association of spiral filamentous virus like particles with Rice Hoja Blanca. Phytopathology, 73, 971–974.

    Article  Google Scholar 

  • Moritz, G. (1997). Structure, growth, and development. In T. Lewis (Ed.), Thrips as crop pests (pp. 15–63). Oxon: CAB International.

    Google Scholar 

  • Moritz, G., Kumm, S., & Mound, L. (2004). Tospovirus transmission depends on thrips ontogeny. Virus Research, 100, 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Nagata, T., & Avila, A. C. (2000). Transmission of Chrysanthemum stem necrosis virus, a recently discovered tospovirus, by two thrips species. Journal of Phytopathology, 148, 123–125.

    Article  Google Scholar 

  • Nagata, T., Inoue-Nagata, A. K., Smid, H. M., Goldbach, R., & Peters, D. (1999). Tissue tropism related to vector competence of Frankliniella occidentalis for Tomato spotted wilt tospovirus. Journal of General Virology, 80, 507–515.

    Article  CAS  PubMed  Google Scholar 

  • Nagata, T., Nagata-Inoue, A. K., Prins, M., Goldbach, R., & Peters, D. (2000). Impeded thrips transmission of defective Tomato spotted wilt virus isolates. Phytopathology, 90, 454–459.

    Article  CAS  PubMed  Google Scholar 

  • Nagata, T., Almeida, A. C. L., Resende, R. O., & de Avila, A. C. (2004). The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathology, 53, 136–140.

    Article  Google Scholar 

  • Naidu, R. A., Deom, C. M., & Sherwood, J. L. (2001). First report of Frankliniella fusca as a vector of Impatiens necrotic spot tospovirus. Plant Diseases, 85, 1211.

    Article  Google Scholar 

  • Nakahara, S., & Monteiro, R. C. (1999). Frankliniella zucchini (Thysanoptera: Thripidae), a new species and vector of tospovirus in Brazil. Proceedings of the Entomological Society of Washington, 101, 290–294.

    Google Scholar 

  • Nasu, S. (1963). Studies on some leafhoppers and planthoppers which transmit diseases of rice plant in Japan. Bulletin of the Kyushu Agricultural Experiment Station, 8, 153–340.

    Google Scholar 

  • Nault, L. R., & Gordon, D. T. (1988). Multiplication of Maize stripe virus in Peregrinus maidis. Phytopathology, 78, 991–995.

    Article  Google Scholar 

  • Noda, H., Kawai, S., Koizumi, Y., Matsui, K., Zhang, Q., Furukawa, S., Shimomura, M., & Mita, K. (2008). Annotated ESTs from various tissues of the brown planthopper Nilaparvata lugens: A genomic resource for studying agricultural pests. BMC Genomics, 9, 117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohnishi, J., Katsuzaki, H., Tsuda, S., Sakurai, T., Akutsu, K., & Murai, T. (2006). Frankliniella cephalica, a new vector for Tomato spotted wilt virus. Plant Diseases, 90, 685.

    Article  Google Scholar 

  • Oliveira, V. C., Bartasson, L., Batista de Castro, M. E., Correa, J. R., Ribeiro, B. M., & Oliveira Resende, R. (2011). A silencing suppressor protein (NSs) of a tospovirus enhances baculovirus replication in permissive and semipermissive insect cell lines. Virus Research, 155, 259–267.

    Article  CAS  PubMed  Google Scholar 

  • Omura, T., & Jan, J. (1999). Role of outer capsid proteins in transmission of Phytoreovirus by insect vectors. Advances in Virus Research, 54, 15–43.

    Article  CAS  PubMed  Google Scholar 

  • Omura, T., Yan, J., Zhong, B., Wada, M., & Zhu, Y. (1998). The P2 protein of Rice dwarf virus is required for adsorption of the virus to cells of the insect vector. Journal of Virology, 72, 9370–9373.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, X., Zha, W., He, R., Lu, T., Zhu, L., Han, B., & He, G. (2011). Pyrosequencing the midgut transcriptome of the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 20, 745–762.

    Article  CAS  PubMed  Google Scholar 

  • Peters, D., Wijkamp, I., van de Wetering, F., & Goldbach, R. (1995). Vector relations in the transmission and epidemiology of tospoviruses. International Symposium on Tospoviruses and Thrips of Floral and Vegetable Crops Acta Hort, 431, 29–43.

    Google Scholar 

  • Pittman, H. A. (1927). Spotted wilt of tomatoes. Journal of Australian Council for Scientific and Industrial Research, 1, 74–77.

    Google Scholar 

  • Plassmeyer, M. L., Soldan, S. S., Stachelek, K. M., Martin-Garcia, J., & Gonzalez-Scarano, F. (2005). California serogroup, GC (Gl) glycoprotein is the principal determinant of pH-dependent cell fusion and entry. Virology, 338, 121–132.

    Article  CAS  PubMed  Google Scholar 

  • Plassmeyer, M. L., Soldan, S. S., Stachelek, K. M., Roth, S. M., Martin-Garcia, J., & Gonzalez-Scarano, F. (2007). Mutagenesis of the La Crosse Virus glycoprotein supports a role for Gc (1066–1087) as the fusion peptide. Virology, 358, 273–282.

    Article  CAS  PubMed  Google Scholar 

  • Plyusnin, A., Beaty, B. J., Elliott, R. M., Goldbach, R., Kormelink, R., Lundkvist, A., Schmaljohn, C. S., & Tesh, R. B. (2012). Bunyaviridae. In A. M. Q. King, E. Lefkowitz, M. J. Adams, & E. B. Carstens (Eds.), Virus taxonomy: Ninth report of the international committee on taxonomy of viruses (pp. 725–741). New York: Academic Press.

    Google Scholar 

  • Premachandra, W. T., Borgemeister, C., Maiss, E., Knierim, D., & Poehling, H. M. (2005). Ceratothripoides claratris, a new vector of a Capsicum chlorosis virus isolate infecting tomato in Thailand. Phytopathology, 95, 659–663.

    Article  CAS  PubMed  Google Scholar 

  • Quito-Avila, D. F., Lightle, D., Lee, J., & Martin, R. R. (2012). Transmission biology of Raspberry latent virus, the First Aphid-Borne Reovirus. Phytopathology, 102, 547–553.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez, B. C., & Haenni, A. L. (1994). Molecular biology of Tenuiviruses, a remarkable group of Plant-Viruses. Journal of General Virology, 75, 467–475.

    Article  CAS  PubMed  Google Scholar 

  • Ramirez, B. C., Macaya, G., Calvert, L. A., & Haenni, A. L. (1992). Rice Hoja Blanca Virus genome characterization and expression in vitro. Journal of General Virology, 73, 1457–1464.

    Article  CAS  PubMed  Google Scholar 

  • Ramsey, J. S., Wilson, A. C. C., de Vos, M., Sun, Q., Tamborindeguy, C., Winfield, A., Malloch, G., Smith, D. M., Fenton, B., Gray, S. M., & Jander, G. (2007). Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design. BMC Genomics, 8, 423.

    Article  PubMed  PubMed Central  Google Scholar 

  • Razvyazkina, G. M. (1953). The importance of the tobacco thrips in the development of outbreaks of tip chlorosis of Makhorka. The Review of Applied Entomology, A42, 146.

    Google Scholar 

  • Reddy, M., Reddy, D. V. R., & Appa, R. (1968). A new record of virus disease on peanut. The Plant Disease Reporter, 52, 494–495.

    Google Scholar 

  • Reddy, D. V. R., Ratna, A. S., Sudarshana, M. R., Poul, F., & Kumar, I. K. (1992). Serological relationships and purification of Bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea L.) in India. Annals of Applied Biology, 120, 279–286.

    Article  Google Scholar 

  • Redinbaugh, M. G., & Hogenhout, S. A. (2005). Plant Rhabdoviruses. Current Topics in Microbiology and Immunology, 292, 143–163.

    CAS  PubMed  Google Scholar 

  • Redinbaugh, M. G., Whitfield, A. E., & Ammar, E. D. (2012). Insect vector interaction and transmission of cereal-infecting rhabdoviruses. In R. G. Dietzgen & I. V. Kuzmin (Eds.), Rhabdoviruses: Molecular taxonomy, evolution, genomics, ecology, host-vector interactions, cytopathology and control (pp. 147–164). Norfolk: Caister Academic Press.

    Google Scholar 

  • Rezende, J. A. M., Galleti, S. R., Pozzer, L., Resende, R. O., Avila, A. C., & Scagliusi, S. M. M. (1997). Incidence, biological and serological characteristics of a tospovirus in experimental fields of zucchini in Sao Paulo State, Brazil. Fitopatologia Brasileira, 22, 92–95.

    Google Scholar 

  • Richmond, K. E., Chenault, K., Sherwood, J. L., & German, T. L. (1998). Characterization of the nucleic acid binding properties of Tomato spotted wilt virus nucleocapsid protein. Virology, 248, 6–11.

    Article  CAS  PubMed  Google Scholar 

  • Rotenberg, D., & Whitfield, A. E. (2010). Analysis of expressed sequence tags from Frankliniella occidentalis, the western flower thrips. Insect Molecular Biology, 19, 537–551.

    CAS  PubMed  Google Scholar 

  • Sakimura, K. (1962). The present status of thrips-borne viruses. In K. Maramorosch (Ed.), Biological transmission of disease agents (pp. 33–40). New York: Academic Press.

    Chapter  Google Scholar 

  • Sakimura, K. (1963). Frankliniella fusca, an additional vector for Tomato spotted wilt virus with notes on Thrips tabaci, another vector. Phytopathology, 53, 412–415.

    Google Scholar 

  • Sakimura, K. (1969). A comment on color forms of Frankliniella schultzei (Thysanoptera-Thripidae) in relation to transmission of Tomato spotted wilt virus. Pacific Insects, 11, 761–762.

    Google Scholar 

  • Sakurai, T., Inoue, T., & Tsuda, S. (2004). Distinct efficiencies of Impatiens necrotic spot virus transmission by five thrips vector species (Thysanoptera: Thripidae) of tospoviruses in Japan. Applied Entomology and Zoology, 39, 71–78.

    Article  Google Scholar 

  • Samuel, G., Bald, J. G., & Pittman, H. A. (1930). Investigations on “spotted wilt” of tomatoes in Australia. Commonwealth Council for Scientific and Industrial Research Bulletin, 44, 8–11.

    Google Scholar 

  • Satyanarayana, T., Reddy, K. L., Ratna, A. S., Deom, C. M., Gowda, S., & Reddy, D. V. R. (1996). Peanut yellow spot virus: A distinct tospovirus species based on serology and nucleic acid hybridisation. Annals of Applied Biology, 129, 237–245.

    Article  Google Scholar 

  • Schnettler, E., Hemmes, H., Huismann, R., Goldbach, R., Prins, M., & Kormelink, R. (2010). Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules. Journal of Virology, 84, 11542–11554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholthof, K. B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938–954.

    Article  CAS  PubMed  Google Scholar 

  • Seepiban, C., Gajanandana, O., Attathom, T., & Attathom, S. (2011). Tomato necrotic ringspot virus, a new tospovirus isolated in Thailand. Archives of Virology, 156, 263–274.

    Article  CAS  PubMed  Google Scholar 

  • Seifers, D. L., Harvey, T. L., She, Y.-M., Ens, W., Standing, K. G., Salomon, R., & Gera, A. (2005). Association of a virus with wheat displaying yellow head disease symptoms in the great plains. Plant Disease, 89, 888–895.

    Article  CAS  Google Scholar 

  • Sharma, R., Komatsu, S., & Noda, H. (2004). Proteomic analysis of the brown planthopper: Application to the study of carbamate toxicity. Insect Biochemistry and Molecular Biology, 34, 425–432.

    Article  CAS  PubMed  Google Scholar 

  • Shope, R. E. (1985). Bunyaviruses. In B. N. Fields, D. M. Knipe, R. M. Chanock, J. L. Melnick, B. Roezman, & R. E. Shope (Eds.), Virology (pp. 1055–1082). New York: Raven Press.

    Google Scholar 

  • Sin, S.-H., McNulty, B. C., Kennedy, G. G., & Moyer, J. W. (2005). Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proceedings of the National Academy of Sciences of the United States of America, 102, 5168–5173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha, R. C. (1970). Ellymana virescens, a newly described vector of wheat striate mosaic virus. Canadian Plant Disease Survey, 50, 118–120.

    Google Scholar 

  • Stafford, C. A., Walker, G. P., & Ullman, D. E. (2011). Infection with a plant virus modifies vector feeding behavior. Proceedings of the National Academy of Sciences of the United States of America, 108, 9350–9355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafford-Banks, C. A., Rotenberg, D., Johnson, B. R., Whitfield, A. E., & Ullman, D. E. (2014). Analysis of the salivary gland transcriptome of Frankliniella occidentalis. PLoS One, 9, e94447.

    Article  PubMed  PubMed Central  Google Scholar 

  • Storms, M. H., Kormelink, R., Peters, D., Van Lent, J. W. M., & Goldbach, R. W. (1995). The nonstructural NSm protein of Tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology, 214, 485–493.

    Article  CAS  PubMed  Google Scholar 

  • Strauss, J. H., & Strauss, E. G. (1988). Evolution of RNA viruses. Annual Review of Microbiology, 42, 657–683.

    Article  CAS  PubMed  Google Scholar 

  • Sylvester, E. S. (1980). Circulative and propagative virus transmission by aphids. Annual Review of Entomology, 25, 257–286.

    Article  Google Scholar 

  • Takahashi, M., Toriyama, S., Kikuchi, Y., Hayakawa, T., & Ishihama, A. (1990). Complementarity between the 5′ and 3′ terminal sequences of Rice strip virus RNAs. Journal of General Virology, 71, 2817–2821.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, M., Toriyama, S., Hamamatsu, C., & Ishihama, A. (1993). Nucleotide sequence and possible ambisense coding strategy of Rice stripe virus RNA segment-2. Journal of General Virology, 74, 769–773.

    Article  CAS  PubMed  Google Scholar 

  • Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Okuno, S., & Tsuda, T. (2002). Identification of a novel RNA silencing suppressor. NSs protein of Tomato spotted wilt virus. FEBS Letters, 532, 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, Y., Suetsugu, Y., Yamamoto, K., Noda, H., & Shinoda, T. (2014). Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens. Peptides, 53, 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Todd, J. C., Ammar, E.-D., Redinbaugh, M. G., Hoy, C., & Hogenhout, S. A. (2010). Plant host range and leafhopper transmission of Maize fine streak virus. Phytopathology, 100, 1138–1145.

    Article  PubMed  Google Scholar 

  • Toriyama, S. (1986). An RNA-dependent RNA-polymerase associated with the filamentous nucleoproteins of Rice stripe virus. Journal of General Virology, 67, 1247–1255.

    Article  CAS  Google Scholar 

  • Toriyama, S. (1987). Ribonucleic acid polymerase activity in filamentous nucleoproteins of Rice grassy stunt virus. Journal of General Virology, 68, 925–929.

    Article  CAS  Google Scholar 

  • Toriyama, S., & Watanabe, Y. (1989). Characterization of single-stranded and double-stranded RNAs in particles of Rice stripe virus. Journal of General Virology, 70, 505–511.

    Article  CAS  Google Scholar 

  • Toriyama, S., Akahashi, M., Sano, Y., Shimizu, T., & Ishihama, A. (1994). Nucleotide sequence of RNA-1, the largest genomic segment of Rice stripe virus, the prototype of the tenuiviruses. Journal of General Virology, 75, 3569–3579.

    Article  CAS  PubMed  Google Scholar 

  • Toriyama, S., Kimishima, T., & Takahashi, M. (1997). The proteins encoded by rice grassy stunt virus RNA5 and RNA6 are only distantly related to the corresponding proteins of other members of the genus Tenuivirus. Journal of General Virology, 78, 2355–2363.

    Article  CAS  PubMed  Google Scholar 

  • Toriyama, S., Kimishima, T., Takahashi, M., Shimizu, T., Minaka, N., & Akutsu, K. (1998). The complete nucleotide sequence of the rice grassy stunt virus genome and genomic comparisons with viruses of the genus Tenuivirus. Journal of General Virology, 79, 2051–2058.

    Article  CAS  PubMed  Google Scholar 

  • Torres, R., Larenas, J. A., Fribourg, C., & Romero, J. (2012). Pepper necrotic spot virus, a new tospovirus infecting solanaceous crops in Peru. Archives of Virology, 157, 609–615.

    Article  CAS  PubMed  Google Scholar 

  • Tsuda, S., Fujisawa, I., Ohnishi, J., Hosokawa, D., & Tomaru, K. (1996). Localization of Tomato spotted wilt tospovirus in larvae and pupae of the insect vector Thrips setosus. Phytopathology, 86, 1199–1203.

    Article  Google Scholar 

  • Uhrig, J. F., Soellick, T. R., Minke, C. J., Philipp, C., Kellmann, J. W., & Schreier, P. H. (1999). Homotypic interaction and multimerization of nucleocapsid protein of Tomato spotted wilt tospovirus: Identification and characterization of two interacting domains. Proceedings of the National Academy of Sciences of the United States of America, 96, 55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullman, D. E., Westcot, D. M., Mau, R. F. L., Cho, J. J., & Cluster, D. M. (1991). Tomato spotted wilt virus and one thrips vector: Frankliniella occidentalis (Pergande) internal morphology and virus location. USDA Agricultural Research Service, 87, 127–136.

    Google Scholar 

  • Ullman, D. E., Cho, J. J., Mau, R. F. L., Wescot, D. M., & Custer, D. M. (1992). A midgut barrier to Tomato spotted wilt virus acquisition by adult western flower thrips. Phytopathology, 82, 1333–1342.

    Article  Google Scholar 

  • Ullman, D. E., Wescot, D. M., Cantone, F. A., Sherwood, J. L., & German, T. L. (1993a). Immunocytochemical evidence for Tomato spotted wilt virus (TSWV) replication in cells of the western flower thrips, Frankliniella occidentalis (Pergrande). Phytopathology, 83, 456–463.

    Article  CAS  Google Scholar 

  • Ullman, D. E., Sherwood, J. L., German, T. L., Westcot, D. M., Chenault, K. D., & Cantone, F. A. (1993b). Location and composition of cytoplasmic inclusions in thrips cells infected with Tomato spotted wilt tospovirus (TSWV). Phytopathology, 83, 1374.

    Article  Google Scholar 

  • Ullman, D. E., Westcot, D. M., Chenault, K. D., Sherwood, J. L., German, T. L., Bandla, M. D., Cantone, F. A., & Duer, H. L. (1995). Compartmentalization, intracellular transport, and autophagy of Tomato spotted wilt tospovirus proteins in infected thrips cells. Phytopathology, 85, 644–654.

    Article  Google Scholar 

  • Ullman, D. E., Sherwood, J. L., & German, T. L. (1997). Thrips as vectors of plant pathogens. In T. Lewis (Ed.), Thrips as crop pests (pp. 539–565). New York: CAB International.

    Google Scholar 

  • van de Wetering, F., Goldbach, R., & Peters, D. (1996). Tomato spotted wilt tospovirus ingestion by first instar larvae of Frankliniella occidentalis is a prerequisite for transmission. Phytopathology, 86, 900–905.

    Article  Google Scholar 

  • van de Wetering, F., Hulshof, J., Posthuma, K., Harrewijn, P., Goldbach, R., & Peters, D. (1998). Distinct feeding behavior between sexes of Frankliniella occidentalis results in higher scar production and lower tospovirus transmission by females. Entomologia Experimentalis et Applicata, 88, 9–15.

    Article  Google Scholar 

  • van Knippenberg, I., Lamine, M., Goldbach, R., & Kormelink, R. (2005). Tomato spotted wilt virus transcriptase in vitro displays a preference for cap donors with multiple base complementarity to the viral template. Virology, 335, 122–130.

    Article  PubMed  CAS  Google Scholar 

  • van Poelwijk, F., Kolkman, J., & Goldbach, R. (1996). Sequence analysis of the 5′ ends of Tomato spotted wilt virus N mRNAs. Archives of Virology, 141, 177–184.

    Article  PubMed  Google Scholar 

  • Wang, Q., Yang, J., Zhou, G. H., Zhang, H. M., Chen, J. P., & Adams, M. J. (2010). The complete genome sequence of two isolates of Southern rice black-streaked dwarf virus, a new member of the genus Fijivirus. Journal of Phytopathology, 158, 733–737.

    Article  Google Scholar 

  • Wang, H., Xu, D., Pu, L., & Zhou, G. (2014). Southern rice black-streaked dwarf virus alters insect vectors’ host orientation preferences to enhance spread and increase Rice ragged stunt virus co-infection. Phytopathology, 104, 196–201.

    Article  CAS  PubMed  Google Scholar 

  • Webster, C. G., Reitz, S. R., Perry, K. L., & Adkins, S. (2011). A natural M RNA reassortant arising from two species of plant- and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virology, 413, 216–225.

    Article  CAS  PubMed  Google Scholar 

  • Wei, T., Hibino, H., & Omura, T. (2009). Release of Rice dwarf virus from insect vector cells involves secretory exosomes derived from multivesicular bodies. Communicative and Integrative Biology, 2, 324–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield, A. E., Ullman, D. E., & German, T. L. (2004). Expression and characterization of a soluble form of Tomato spotted wilt virus glycoprotein GN. Journal of Virology, 78, 13197–13206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield, A. E., Ullman, D. E., & German, T. L. (2005). Tomato spotted wilt virus glycoprotein G(C) is cleaved at acidic pH. Virus Research, 110, 183–186.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield, A. E., Kumar, N. K. K., Rotenberg, D., Ullman, D. E., Wyman, E. A., Zietlow, C., Willis, D. K., & German, T. L. (2008). A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein GN (GN-S) inhibits transmission of TSWV by Frankliniella occidentalis. Phytopathology, 98, 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield, A. E., Rotenberg, D., Aritua, V., & Hogenhout, S. A. (2011). Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity. Insect Molecular Biology, 20, 225–242.

    Article  CAS  PubMed  Google Scholar 

  • Wijkamp, I., & Peters, D. (1993). Determination of the median latent period of two tospoviruses in Frankliniella occidentalis, using a novel leaf disk assay. Phytopathology, 83, 986–991.

    Article  Google Scholar 

  • Wijkamp, I., Almarza, N., Goldbach, R., & Peters, D. (1995). Distinct levels of specificity in thrips transmission of tospoviruses. Phytopathology, 85, 1069–1074.

    Article  Google Scholar 

  • Wijkamp, I., Goldbach, R., & Peters, D. (1996). Propagation of Tomato spotted wilt virus in Frankliniella occidentalis does neither result in pathological effects nor in transovarial passage of the virus. Entomologia Experimentalis et Applicata, 81, 285–292.

    Article  Google Scholar 

  • Winter, S., Shahraeen, N., Koerbler, M., & Lesemann, D. E. (2006). Characterization of Tomato fruit yellow ring virus: A new Tospovirus species infecting tomato in Iran. Plant Pathology, 55, 287.

    Article  Google Scholar 

  • Wu, W., Zheng, L., Chen, H., Jia, D., Li, F., & Wei, T. (2014). Nonstructural protein NS4 of Rice stripe virus plays a critical role in viral spread in the body of vector insects. PLoS One, 9, e88636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong, R., Wu, J., Zhou, Y., & Zhou, X. (2008). Identification of a movement protein of the tenuivirus Rice stripe virus. Journal of Virology, 82, 12304–12311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Zhou, W., Zhou, Y., Wu, J., & Zhou, X. (2012a). Transcriptome and comparative gene expression analysis of Sogatella furcifera (Horvath) in response to Southern rice black-streaked dwarf virus. PLoS One, 7, e36238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Huang, L., Fu, S., Wu, J., & Zhou, X. (2012b). Population diversity of Rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphax striatellus. PLoS One, 7, e46238.

    Google Scholar 

  • Xue, J., Bao, Y.-Y., Li, B.-L., Cheng, Y.-B., Peng, Z.-Y., Liu, H., Xu, H.-J., Zhu, Z.-R., Lou, Y.-G., Cheng, J.-A., & Zhang, C.-X. (2010). Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS One, 5, e14233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, J., Tomaru, M., Takahashi, A., Kimura, I., Hibino, H., & Omura, T. (1996). P2 protein encoded by genome segment S2 of rice dwarf phytoreovirus is essential for virus infection. Virology, 224, 539–541.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Fu, Q., Hu, W.-B., Li, F., & Li, G. (2012). Transcriptome-based identification of enzymes involved in amino acid biosynthesis in the small brown plamthopper, Laodelphax striatellus. Open Access Insect Physiology, 4, 19–29.

    Google Scholar 

  • Yao, J., Rotenberg, D., Afsharifar, A., Barandoc-Alviar, K., & Whitfield, A. E. (2013). Development of RNAi methods for Peregrinus maidis, the corn planthopper. PLoS One, 8, 70243.

    Article  CAS  Google Scholar 

  • Yao, M., Liu, X., Li, S., Xu, Y., Zhou, Y., Zhou, X., & Tao, X. (2014). Rice stripe tenuivirus NSvc2 glycoproteins targeted to the Golgi body by the N-terminal transmembrane domain and adjacent cytosolic 24 amino acids via the COP I- and COP II-dependent secretion pathway. Journal of Virology, 88, 3223–3234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeh, S. D., & Chang, T. F. (1995). Nucleotide sequence of the N gene of Watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology, 85, 58–64.

    Article  CAS  Google Scholar 

  • Yu, H., Ji, R., Ye, W., Chen, H., Lai, W., Fu, Q., & Lou, Y. (2014). Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice. PLoS One, 9, e88528.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeigler, R. S., & Morales, F. J. (1990). Genetic determination of replication of Rice hoja blanca virus within its planthopper vector, Sogatodes oryzicola. Phytopathology, 80, 559–566.

    Article  Google Scholar 

  • Zhai, Y., Zhang, J., Sun, Z., Dong, X., He, Y., Kang, K., Liu, Z., & Zhang, W. (2013). Proteomic and transcriptomic analyses of fecundity in the brown planthopper Nilaparvata lugens (Stal). Journal of Proteome Research, 12, 5199–5212.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Liu, Y., Liu, L., Lou, Z., Zhang, H., Miao, H., Hu, X., Pang, Y., & Qiu, B. (2008). Rice black streaked dwarf virus p 9–1, an a-helical protein, self-interacts and forms viroplasms in vivo. Journal of General Virology, 89, 1770–1776.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Guo, H., Zheng, H., Zhou, T., Zhou, Y., Wang, S., Fang, R., Qian, W., & Chen, X. (2010). Massively parallel pyrosequencing-based transcriptome analyses of small brown planthopper (Laodelphax striatellus), a vector insect transmitting Rice stripe virus (RSV). BMC Genomics, 11, 303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, C., Pei, X., Wang, Z., Jia, S., Guo, S., Zhang, Y., & Li, W. (2013a). The Rice stripe virus pc4 functions in movement and foliar necrosis expression in Nicotiana benthamiana. Virology, 425, 113–121.

    Article  CAS  Google Scholar 

  • Zhang, K. J., Zhu, W. C., Rong, X., Zhang, Y. K., Ding, X. L., Liu, J., Chen, D. S., Du, Y., & Hong, X. Y. (2013b). The complete mitochondrial genomes of two rice planthoppers, Nilaparvata lugens and Laodelphax striatellus: Conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes. BMC Genomics, 14, 417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, Y. X., Chen, C. C., & Jan, F. J. (2011). Complete nucleotide sequence of Capsicum chlorosis virus isolated from Phalaenopsis orchid and the prediction of the unexplored genetic information of tospoviruses. Archives of Virology, 156, 421–432.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, L., Mao, Q., Xie, L., & Wei, T. (2014). Infection route of Rice grassy stunt virus, a tenuivirus, in the body of its brown planthopper vector, Nilaparvata lugens (Hemiptera: Delphacidae) after ingestion of virus. Virus Research, 188, 170–173.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, F., Pu, Y., Wei, T., Liu, H., Deng, W., Wei, C., Ding, B., Omura, T., & Li, Y. (2007). The P2 capsid protein of the nonenveloped Rice dwarf phytoreovirus induces membrane fusion in insect host cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 19547–19552.

    Article  Google Scholar 

  • Zhou, J., Kantartzi, S., Wen, R. H., Newman, M., Hajimorad, M., Rupe, J., & Tzanetakis, I. (2011). Molecular characterization of a new tospovirus infecting soybean. Virus Genes, 43, 289–295.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S.-S., Sun, Z., Ma, W., Chen, W., & Wang, M. (2014). De novo analysis of the Nilaparvata lugens (Stal) antenna transcriptome and expression patterns of olfactory genes. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 9, 31–39.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna E. Whitfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barandoc-Alviar, K., Badillo-Vargas, I.E., Whitfield, A.E. (2016). Interactions Between Insect Vectors and Propagative Plant Viruses. In: Czosnek, H., Ghanim, M. (eds) Management of Insect Pests to Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-24049-7_6

Download citation

Publish with us

Policies and ethics