Skip to main content

Solving Polynomial Systems in the Cloud with Polynomial Homotopy Continuation

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9301))

Included in the following conference series:

Abstract

Polynomial systems occur in many fields of science and engineering. Polynomial homotopy continuation methods apply symbolic-numeric algorithms to solve polynomial systems. We describe the design and implementation of our web interface and reflect on the application of polynomial homotopy continuation methods to solve polynomial systems in the cloud. Via the graph isomorphism problem we organize and classify the polynomial systems we solved. The classification with the canonical form of a graph identifies newly submitted systems with systems that have already been solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrovic, D., Verschelde, J.: A polyhedral method to compute all affine solution sets of sparse polynomial systems. arXiv:1310.4128

    Google Scholar 

  2. Adrovic, D., Verschelde, J.: Computing Puiseux series for algebraic surfaces. In: van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation (ISSAC 2012), pp. 20–27. ACM (2012)

    Google Scholar 

  3. Adrovic, D., Verschelde, J.: Polyhedral methods for space curves exploiting symmetry applied to the cyclic n-roots problem. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 10–29. Springer, Heidelberg (2013)

    Google Scholar 

  4. Boege, W., Gebauer, R., Kredel, H.: Some examples for solving systems of algebraic equations by calculating groebner bases. J. Symbolic Computation 2, 83–98 (1986)

    Google Scholar 

  5. Bouillaguet, C., Fouque, P.-A., Véber, A.: Graph-theoretic algorithms for the “isomorphism of polynomials” problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 211–227. Springer, Heidelberg (2013)

    Google Scholar 

  6. Coar, K., Bower, R.: Apache Cookbook. 1st edn. O’Reilly Media, Inc. (2004)

    Google Scholar 

  7. Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. 11(2), 121–137 (1979)

    Google Scholar 

  8. Datta, R.: Finding all nash equilibria of a finite game using polynomial algebra. Economic Theory 42(1), 55–96 (2009)

    Google Scholar 

  9. DuBois, P.: MySQL Cookbook. 2nd edn. O’Reilly Media, Inc. (2006)

    Google Scholar 

  10. Faugère, J.-C., Perret, L.: Polynomial equivalence problems: algorithmic and theoretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30–47. Springer, Heidelberg (2006)

    Google Scholar 

  11. Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compositio Mathematica 6, 239–250 (1939)

    Google Scholar 

  12. Gao, T., Li, T., Wu, M.: Algorithm 846: MixedVol: a software package for mixed-volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005)

    Google Scholar 

  13. Grayson, D., Stillman, M.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/

  14. Gross, E., Petrović, S., Verschelde, J.: PHCpack in Macaulay2. The Journal of Software for Algebra and Geometry: Macaulay 2(5), 20–25 (2013)

    Google Scholar 

  15. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comp. 64(212), 1541–1555 (1995)

    Google Scholar 

  16. Huber, B., Verschelde, J.: Polyhedral end games for polynomial continuation. Numerical Algorithms 18(1), 91–108 (1998)

    Google Scholar 

  17. Jensen, A., Markwig, H., Markwig, T.: An algorithm for lifting points in a tropical variety. Collectanea Mathematica 59(2), 129–165 (2008)

    Google Scholar 

  18. Kaibel, V., Schwartz, A.: On the complexity of polytope isomorphism problems. Graphs and Combinatorics 19(2), 215–230 (2003)

    Google Scholar 

  19. Katsura, S.: Spin glass problem by the method of integral equation of the effective field. In: Coutinho-Filho, M., Resende, S. (eds.) New Trends in Magnetism, pp. 110–121. World Scientific (1990)

    Google Scholar 

  20. Li, T.: Numerical solution of polynomial systems by homotopy continuation methods. In: Cucker, F. (ed.) Handbook of Numerical Analysis, vol. 11. Special Volume: Foundations of Computational Mathematics, pp. 209–304. North-Holland (2003)

    Google Scholar 

  21. McKay, B., Piperno, A.: nautyTraces, software distribution web page. http://cs.anu.edu.au/~bdm/nauty/ and http://pallini.di.uniroma1.it/

  22. McKay, B., Piperno, A.: Practical graph isomorphism II. Journal of Symbolic Computation 60, 94–112 (2014)

    Google Scholar 

  23. McKelvey, R., McLennan, A.: The maximal number of regular totally mixed Nash equilibria. Journal of Economic Theory 72, 411–425 (1997)

    Google Scholar 

  24. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Google Scholar 

  25. Pérez, F., Granger, B., Hunter, J.: Python: An ecosystem for scientific computing. Computing in Science & Engineering 13(2), 12–21 (2011)

    Google Scholar 

  26. Piret, K.: Computing Critical Points of Polynomial Systems using PHCpack and Python. PhD thesis, University of Illinois at Chicago (2008)

    Google Scholar 

  27. Rehr, J., Vila, F., Gardner, J., Svec, L., Prange, M.: Scientific computing in the cloud. Computing in Science & Engineering 12(3), 34–43 (2010)

    Google Scholar 

  28. Shirt-Ediss, B., Sole, R., Ruiz-Mirazo, K.: Emergent chemical behavior in variable-volume protocells. Life 5, 181–121 (2015)

    Google Scholar 

  29. Sommese, A., Verschelde, J., Wampler, C.: Numerical irreducible decomposition using PHCpack. In: Joswig, M., Takayama, N. (eds.) Algebra, Geometry, and Software Systems, pp. 109–130. Springer (2003)

    Google Scholar 

  30. Stein, W., et al.: Sage Mathematics Software (Version 6.5). The Sage Development Team. (2015). http://www.sagemath.org

  31. Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999)

    Google Scholar 

  32. Verschelde, J.: Modernizing PHCpack through phcpy. In: de Buyl, P., Varoquaux, N. (eds.) Proceedings of the 6th European Conference on Python in Science (EuroSciPy 2013), pp. 71–76 (2014)

    Google Scholar 

  33. Verschelde, J., Verlinden, P., Cools, R.: Homotopies exploiting Newton polytopes for solving sparse polynomial systems. SIAM J. Numer. Anal. 31(3), 915–930 (1994)

    Google Scholar 

  34. Verschelde, J., Yu, X.: Accelerating polynomial homotopy continuation on a graphics processing unit with double double and quad double arithmetic. arXiv:1501.06625, accepted for publication in the Proceedings of the 7th International Workshop on Parallel Symbolic Computation (PASCO 2015)

    Google Scholar 

  35. Verschelde, J., Yu, X.: Tracking many solution paths of a polynomial homotopy on a graphics processing unit. arXiv:1505.00383, accepted for publication in the Proceedings of the 17th IEEE International Conference on High Performance Computing and Communications (HPCC 2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Bliss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bliss, N., Sommars, J., Verschelde, J., Yu, X. (2015). Solving Polynomial Systems in the Cloud with Polynomial Homotopy Continuation. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24021-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24020-6

  • Online ISBN: 978-3-319-24021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics