Skip to main content

Analysis of Reaction Network Systems Using Tropical Geometry

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9301))

Abstract

We discuss a novel analysis method for reaction network systems with polynomial or rational rate functions. This method is based on computing tropical equilibrations defined by the equality of at least two dominant monomials of opposite signs in the differential equations of each dynamic variable. In algebraic geometry, the tropical equilibration problem is tantamount to finding tropical prevarieties, that are finite intersections of tropical hypersurfaces. Tropical equilibrations with the same set of dominant monomials define a branch or equivalence class. Minimal branches are particularly interesting as they describe the simplest states of the reaction network. We provide a method to compute the number of minimal branches and to find representative tropical equilibrations for each branch.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruno, A.D.: Power Geometry in Algebraic and Differential Equations. Elsevier, San Diego (2000)

    Google Scholar 

  2. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, heidelberg (2008)

    Google Scholar 

  3. Emiris, I.Z., Canny, J.F.: Efficient incremental algorithms for the sparse resultant and the mixed volume. J. Symb. Comput. 20(2), 117–149 (1995)

    Google Scholar 

  4. Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactorsi. the deficiency zero and deficiency one theorems. Chemical Engng. Science 42(10), 2229–2268 (1987)

    Google Scholar 

  5. Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chemical reaction systems. J. Symb. Comput. 33(3), 275–305 (2002)

    Google Scholar 

  6. Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Kalai, G., et al. (eds.) Polytopes Combinatorics and Computation, DMV Seminar, vol. 29, pp. 43–73. Springer Basel AG (2000)

    Google Scholar 

  7. Grigor’ev, D.Y., Singer, M.F.: Solving ordinary differential equations in terms of series with real exponents. Trans. Amer. Math. Soc. 327(1), 329–351 (1991)

    Google Scholar 

  8. Haller, G., Sapsis, T.: Localized instability and attraction along invariant manifolds. SIAM J. Appl. Dyn. Syst. 9(2), 611–633 (2010)

    Google Scholar 

  9. Henk, M., Richter-Gebert, J., Ziegler, G.M.: 16 basic properties of convex polytopes. Handbook of Discrete and Computational Geometry, pp. 243–270. CRC Press, Boca Raton (2004)

    Google Scholar 

  10. Jensen, A.: In: Stillman, M., Verschelde, J., Takayama, N. (eds.) Software for Algebraic Geometry. The IMA Volumes in Mathematics and its Applications, vol. 148 (2008)

    Google Scholar 

  11. Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, M.: BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems 34(suppl 1), D689–D691 (2006)

    Google Scholar 

  12. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Graduate Studies in Mathematics, vol. 161. Amer. Math. Soc., RI (2015)

    Google Scholar 

  13. Noel, V., Grigoriev, D., Vakulenko, S., Radulescu, O.: Tropical geometries and dynamics of biochemical networks application to hybrid cell cycle models. In: Feret, J., Levchenko, A. (eds.) Proc. 2nd International Workshop on Static Analysis and Systems Biology (SASB 2011). Electronic Notes in Theoretical Computer Science, vol. 284, pp. 75–91. Elsevier (2012)

    Google Scholar 

  14. Noel, V., Grigoriev, D., Vakulenko, S., Radulescu, O.: Topical and idempotent mathematics and applications. In: Tropicalization and tropical equilibration of chemical reactions, vol. 616. Amer. Math. Soc. (2014)

    Google Scholar 

  15. Radulescu, O., Vakulenko, S., Grigoriev, D.: Model reduction of biochemical reactions networks by tropical analysis methods. Mathematical Model of Natural Phenomena, in press (2015)

    Google Scholar 

  16. Samal, S.S., Errami, H., Weber, A.: PoCaB: a software infrastructure to explore algebraic methods for bio-chemical reaction networks. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 294–307. Springer, Heidelberg (2012)

    Google Scholar 

  17. Soliman, S., Fages, F., Radulescu, O.: A constraint solving approach to model reduction by tropical equilibration. Algorithms for Molecular Biology 9(1), 24 (2014)

    Google Scholar 

  18. Sturmfels, B.: Solving systems of polynomial equations. CBMS Regional Conference Series in Math., no. 97, pp. 7–8. Amer. Math. Soc., Providence, RI (2002)

    Google Scholar 

  19. Thomas, R.: Boolean formalization of genetic control circuits. J. Theoret. Biology 42(3), 563–585 (1973)

    Google Scholar 

  20. Tyson, J.J.: Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. National Academy of Sciences 88(16), 7328–7332 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Swarup Samal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Samal, S.S., Grigoriev, D., Fröhlich, H., Radulescu, O. (2015). Analysis of Reaction Network Systems Using Tropical Geometry. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24021-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24020-6

  • Online ISBN: 978-3-319-24021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics