Skip to main content

Computing Highest-Order Divisors for a Class of Quasi-Linear Partial Differential Equations

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9301))

Included in the following conference series:

  • 775 Accesses

Abstract

A differential polynomial G is called a divisor of a differential polynomial F if any solution of the differential equation G = 0 is a solution of the equation F = 0. We design an algorithm which for a class of quasi-linear partial differential polynomials of order k + 1 finds its quasi-linear divisors of order k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry. Springer, Berlin (2006)

    Google Scholar 

  2. Chistov, A.: An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time. J. Soviet Math. 34, 1838–1882 (1986)

    Google Scholar 

  3. Chistov, A., Grigoriev, D.: Complexity of quantifier elimination in the theory of algebraically closed fields. In: Chytil, M.P., Koubek, V. (eds.) Mathematical Foundations of Computer Science 1984. LNCS, vol. 176, pp. 17–31. Springer, Heidelberg (1984)

    Google Scholar 

  4. Gao, X.S., Zhang, M.: Decomposition of ordinary differential polynomials. Appl. Alg. Eng. Commun. Comput. 19, 1–25 (2008)

    Google Scholar 

  5. Golubitsky, O., Kondratieva, M., Ovchinnikov, A., Szanto, A.: A bound for orders in differential Nullstellensatz. J. Algebra 322, 3852–3877 (2009)

    Google Scholar 

  6. Goursat, E.: Leçons sur L’intégration des Équations aux Dérivées Partielles, vol. II. A. Hermann, Paris (1898)

    Google Scholar 

  7. Grigoriev, D.: Polynomial factoring over a finite field and solving systems of algebraic equations. J. Soviet Math. 34, 1762–1803 (1986)

    Google Scholar 

  8. Grigoriev, D.: Complexity of factoring and GCD calculating of ordinary linear differential operators. J. Symp. Comput. 10, 7–37 (1990)

    Google Scholar 

  9. Grigoriev, D.: Analogue of Newton-Puiseux series for non-holonomic D-modules and factoring. Moscow Math. J. 9, 775–800 (2009)

    Google Scholar 

  10. Grigoriev, D., Schwarz, F.: Factoring and solving linear partial differential equations. Computing 73, 179–197 (2004)

    Google Scholar 

  11. Grigoriev, D., Schwarz, F.: Loewy and primary decompositions of D-modules. Adv. Appl. Math. 38, 526–541 (2007)

    Google Scholar 

  12. Grigoriev, D., Schwarz, F.: Non-holonomic ideal in the plane and absolute factoring. In: Proc. Intern. Symp. Symbol. Algebr. Comput., pp. 93–97. ACM, Munich (2010)

    Google Scholar 

  13. Grigoriev, D., Schwarz, F.: Computing divisors and common multiples of quasi-linear ordinary differential equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 140–147. Springer, Heidelberg (2013)

    Google Scholar 

  14. Kolchin, E.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    Google Scholar 

  15. Schlesinger, L.: Handbuch der Theorie der linearen Differentialgleichungen II. Teubner, Leipzig (1897)

    Google Scholar 

  16. Schwarz, F.: A factorization algorithm for linear ordinary differential equations. In: Proc. Intern. Symp. Symbol. Algebr. Comput., Portland, pp. 17–25. ACM (1989)

    Google Scholar 

  17. Schwarz, F.: Loewy Decomposition of Linear Differential Equations. Springer, Vienna (2012)

    Google Scholar 

  18. Tsarev, S.: On factorization of nonlinear ordinary differential equations. In: Proc. Symp. Symbol. Algebr. Comput., Vancouver, pp. 159–164. ACM (1999)

    Google Scholar 

  19. Tsarev, S.: Generalized laplace transformations and integration of hyperbolic systems of linear partial differential equations. In: Proc. Intern. Symp. Symbol. Algebr. Comput., pp. 325–331. ACM, Peking (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dima Grigoriev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Grigoriev, D., Schwarz, F. (2015). Computing Highest-Order Divisors for a Class of Quasi-Linear Partial Differential Equations. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24021-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24020-6

  • Online ISBN: 978-3-319-24021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics