Skip to main content

Sex Hormone Signaling in the Lung in Health and Disease: Airways, Parenchyma, and Pulmonary Vasculature

  • Chapter
  • First Online:
Gender, Sex Hormones and Respiratory Disease

Part of the book series: Respiratory Medicine ((RM))

Abstract

Gender and sex differences have been implicated in many major lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary arterial hypertension, and lung cancer. Sex differences and sex hormone-mediated effects emerge in the lung as early as during prenatal development and persist well into adulthood. In addition, significant sex hormone-mediated differences may occur even within the same individual, resulting from fluctuations in sex hormone levels as a function of age and/or menstrual cycle. While the exact role of sex hormones in many lung diseases has not been fully characterized, it is now evident that all major cell types in the lung appear to be targets of sex hormones. Many of these effects, however, are heterogenous and often not fully understood. This chapter will review the effects of the most relevant sex hormones on lung parenchyma, airways, and vasculature in health, thus providing a segue for the individual disease states reviewed in later chapters of this textbook. The biogenesis, signaling mechanisms, and regulation of the three main classes of sex hormones (estrogens, progestogens, and androgens) will be reviewed, followed by an examination of the role of sex hormones in healthy lung development and homeostasis. Finally, the current understanding of the role of steroid signaling in the healthy lung will be reviewed via a compartment-based approach, highlighting current knowledge gaps and identifying research opportunities. Where appropriate, the impact of sex hormones on pulmonary disease and their clinical implications will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CDC. National vital statistics reports, Deaths: Final data for 2004. Volume 55. DeKalb County: Centers for Disease Control and Prevention; 2007.

    Google Scholar 

  2. Austin ED, Lahm T, West J, Tofovic SP, Johansen AK, et al. Gender, sex hormones and pulmonary hypertension. Pulm Circ. 2013;3:294–314.

    PubMed  PubMed Central  Google Scholar 

  3. Balzano G, Fuschillo S, Melillo G, Bonini S. Asthma and sex hormones. Allergy. 2001;56:13–20.

    CAS  PubMed  Google Scholar 

  4. Belani CP, Marts S, Schiller J, Socinski MA. Women and lung cancer: epidemiology, tumor biology, and emerging trends in clinical research. Lung Cancer. 2007;55:15–23.

    PubMed  Google Scholar 

  5. Caracta CF. Gender differences in pulmonary disease. Mt Sinai J Med. 2003;70:215–24.

    PubMed  Google Scholar 

  6. Townsend EA, Miller VM, Prakash YS. Sex differences and sex steroids in lung health and disease. Endocr Rev. 2012;33:1–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bonds RS, Midoro-Horiuti T. Estrogen effects in allergy and asthma. Curr Opin Allergy Clin Immunol. 2013;13:92–9. doi:10.1097/ACI.1090b1013e32835a32836dd32836.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Seaborn T, Simard M, Provost PR, Piedboeuf B, Tremblay Y. Sex hormone metabolism in lung development and maturation. Trends Endocrinol Metab. 2010;21:729–38.

    CAS  PubMed  Google Scholar 

  9. Tam A, Morrish D, Wadsworth S, Dorscheid D, Man SF, et al. The role of female hormones on lung function in chronic lung diseases. BMC Womens Health. 2011;11:24.

    PubMed  PubMed Central  Google Scholar 

  10. Barr RG, Camargo Jr CA. Hormone replacement therapy and obstructive airway diseases. Treat Respir Med. 2004;3:1–7.

    CAS  PubMed  Google Scholar 

  11. Koledova VV, Khalil RA. Sex hormone replacement therapy and modulation of vascular function in cardiovascular disease. Expert Rev Cardiovasc Ther. 2007;5:777–89.

    CAS  PubMed  Google Scholar 

  12. Barr RG, Wentowski CC, Grodstein F, Somers SC, Stampfer MJ, et al. Prospective study of postmenopausal hormone use and newly diagnosed asthma and chronic obstructive pulmonary disease. Arch Intern Med. 2004;164:379–86.

    PubMed  Google Scholar 

  13. Institute of Medicine. Sex-specific reporting of scientific research - Workshop summary. Washington, DC: Institute of Medicine; 2012.

    Google Scholar 

  14. U.S. Department of Health and Human Services, NIoH, Office of Research on Women’s Health, editors. Strategic Plan: Moving into the future with new dimensions and strategies: a vision for 2020 for women’s health research; 2010.

    Google Scholar 

  15. Luu-The V, Labrie F. The intracrine sex steroid biosynthesis pathways. Prog Brain Res. 2010;181:177–92.

    CAS  PubMed  Google Scholar 

  16. Labrie F, Simard J, Luu-The V, Trudel C, Martel C, et al. Expression of 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase (3 beta-HSD) and 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) in adipose tissue. Int J Obes. 1991;15 Suppl 2:91–9.

    CAS  PubMed  Google Scholar 

  17. Labrie F. Extragonadal synthesis of sex steroids: intracrinology. Ann Endocrinol (Paris). 2003;64:95–107.

    CAS  Google Scholar 

  18. Wizeman TM, Pardue ML. Exploring the Biological Contributions to Human Health: Does Sex Matter? Washington, DC: National Academy Press, 2001, p. 288.

    Google Scholar 

  19. Committee AMAMoS. American Medical Association manual of style: a guide for editors, Correct and Preferred Usage. 10th ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  20. Ghayee HK, Auchus RJ. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord. 2007;8:289–300.

    CAS  PubMed  Google Scholar 

  21. Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 2004;25:947–70.

    CAS  PubMed  Google Scholar 

  22. Tuckey RC. Progesterone synthesis by the human placenta. Placenta. 2005;26:273–81.

    CAS  PubMed  Google Scholar 

  23. Hanukoglu I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J Steroid Biochem Mol Biol. 1992;43:779–804.

    CAS  PubMed  Google Scholar 

  24. Guo IC, Shih MC, Lan HC, Hsu NC, Hu MC, et al. Transcriptional regulation of human CYP11A1 in gonads and adrenals. J Biomed Sci. 2007;14:509–15.

    CAS  PubMed  Google Scholar 

  25. Shih MC, Chiu YN, Hu MC, Guo IC, Chung BC. Regulation of steroid production: analysis of Cyp11a1 promoter. Mol Cell Endocrinol. 2011;336:80–4.

    CAS  PubMed  Google Scholar 

  26. Chapman JC, Polanco JR, Min S, Michael SD. Mitochondrial 3 beta-hydroxysteroid dehydrogenase (HSD) is essential for the synthesis of progesterone by corpora lutea: an hypothesis. Reprod Biol Endocrinol. 2005;3:11.

    PubMed  PubMed Central  Google Scholar 

  27. Soucy P, Luu-The V. Conversion of pregnenolone to DHEA by human 17alpha-hydroxylase/17, 20-lyase (P450c17). Evidence that DHEA is produced from the released intermediate, 17alpha-hydroxypregnenolone. Eur J Biochem. 2000;267:3243–7.

    CAS  PubMed  Google Scholar 

  28. Labrie F, Luu-The V, Labrie C, Simard J. DHEA and its transformation into androgens and estrogens in peripheral target tissues: intracrinology. Front Neuroendocrinol. 2001;22:185–212.

    CAS  PubMed  Google Scholar 

  29. Labrie F, Luu-The V, Labrie C, Belanger A, Simard J, et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. Endocr Rev. 2003;24:152–82.

    CAS  PubMed  Google Scholar 

  30. Reed MJ, Purohit A, Woo LW, Newman SP, Potter BV. Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr Rev. 2005;26:171–202.

    CAS  PubMed  Google Scholar 

  31. Zhu YS, Imperato-McGinley JL. 5alpha-reductase isozymes and androgen actions in the prostate. Ann NY Acad Sci. 2009;1155:43–56.

    CAS  PubMed  Google Scholar 

  32. Miller WL. Androgen biosynthesis from cholesterol to DHEA. Mol Cell Endocrinol. 2002;198:7–14.

    CAS  PubMed  Google Scholar 

  33. Labrie F, Luu-The V, Lin SX, Labrie C, Simard J, et al. The key role of 17 beta-hydroxysteroid dehydrogenases in sex steroid biology. Steroids. 1997;62:148–58.

    CAS  PubMed  Google Scholar 

  34. Babiker FA, De Windt LJ, van Eickels M, Thijssen V, Bronsaer RJP, et al. 17β-estradiol antagonizes cardiomyocyte hypertrophy by autocrine/paracrine stimulation of a guanylyl cyclase A receptor-cyclic guanosine monophosphate-dependent protein kinase pathway. Circulation. 2004;109:269–76.

    CAS  PubMed  Google Scholar 

  35. Risbridger GP, Ellem SJ, McPherson SJ. Estrogen action on the prostate gland: a critical mix of endocrine and paracrine signaling. J Mol Endocrinol. 2007;39:183–8.

    CAS  PubMed  Google Scholar 

  36. Hatthachote P, Gillespie JI. Complex interactions between sex steroids and cytokines in the human pregnant myometrium: evidence for an autocrine signaling system at term. Endocrinology. 1999;140:2533–40.

    CAS  PubMed  Google Scholar 

  37. Richards JA, Petrel TA, Brueggemeier RW. Signaling pathways regulating aromatase and cyclooxygenases in normal and malignant breast cells. J Steroid Biochem Mol Biol. 2002;80:203–12.

    CAS  PubMed  Google Scholar 

  38. Dontu G, El-Ashry D, Wicha MS. Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab. 2004;15:193–7.

    CAS  PubMed  Google Scholar 

  39. Elmlinger MW, Kuhnel W, Ranke MB. Reference ranges for serum concentrations of lutropin (LH), follitropin (FSH), estradiol (E2), prolactin, progesterone, sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), cortisol and ferritin in neonates, children and young adults. Clin Chem Lab Med. 2002;40:1151–60.

    CAS  PubMed  Google Scholar 

  40. Tulchinsky D, Hobel CJ, Yeager E, Marshall JR. Plasma estrone, estradiol, estriol, progesterone, and 17-hydroxyprogesterone in human pregnancy. I. Normal pregnancy. Am J Obstet Gynecol. 1972;112:1095–100.

    CAS  PubMed  Google Scholar 

  41. Labrie F, Belanger A, Luu-The V, Labrie C, Simard J, et al. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids. 1998;63:322–8.

    CAS  PubMed  Google Scholar 

  42. Bulun SE, Zeitoun K, Sasano H, Simpson ER. Aromatase in aging women. Semin Reprod Endocrinol. 1999;17:349–58.

    CAS  PubMed  Google Scholar 

  43. Thakur MK, Paramanik V. Role of steroid hormone coregulators in health and disease. Horm Res. 2009;71:194–200.

    CAS  PubMed  Google Scholar 

  44. Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 2003;86:225–30.

    CAS  PubMed  Google Scholar 

  45. Harada N, Sasano H, Murakami H, Ohkuma T, Nagura H, et al. Localized expression of aromatase in human vascular tissues. Circ Res. 1999;84:1285–91.

    CAS  PubMed  Google Scholar 

  46. White K, Johansen AK, Nilsen M, Ciuclan L, Wallace E, et al. Activity of the estrogen-metabolizing enzyme cytochrome P450 1B1 influences the development of pulmonary arterial hypertension. Circulation. 2012;126:1087–98.

    CAS  PubMed  Google Scholar 

  47. Dempsie Y, MacRitchie NA, White K, Morecroft I, Wright AF, et al. Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension. Cardiovasc Res. 2013;99:24–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin YN, Manlove L, Dong J, Carey WA, Thompson MA, et al. Hyperoxia-induced changes in estradiol metabolism in postnatal airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2015;308:L141–6.

    CAS  PubMed  Google Scholar 

  49. Parl FF, Dawling S, Roodi N, Crooke PS. Estrogen metabolism and breast cancer: a risk model. Ann NY Acad Sci. 2009;1155:68–75.

    CAS  PubMed  Google Scholar 

  50. Nebert DW. Elevated estrogen 16 alpha-hydroxylase activity: is this a genotoxic or nongenotoxic biomarker in human breast cancer risk? J Natl Cancer Inst. 1993;85:1888–91.

    CAS  PubMed  Google Scholar 

  51. Tsuchiya Y, Nakajima M, Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005;227:115–24.

    CAS  PubMed  Google Scholar 

  52. Yager JD, Davidson NE. Estrogen carcinogenesis in breast cancer. N Engl J Med. 2006;354:270–82.

    CAS  PubMed  Google Scholar 

  53. Zhu BT, Han GZ, Shim JY, Wen Y, Jiang XR. Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: insights into the structural determinants favoring a differential subtype binding. Endocrinology. 2006;147:4132–50.

    CAS  PubMed  Google Scholar 

  54. Bolton JL, Thatcher GR. Potential mechanisms of estrogen quinone carcinogenesis. Chem Res Toxicol. 2008;21:93–101.

    PubMed  Google Scholar 

  55. Roy D, Cai Q, Felty Q, Narayan S. Estrogen-induced generation of reactive oxygen and nitrogen species, gene damage, and estrogen-dependent cancers. J Toxicol Environ Health B Crit Rev. 2007;10:235–57.

    CAS  PubMed  Google Scholar 

  56. Eliassen AH, Missmer SA, Tworoger SS, Hankinson SE. Circulating 2-hydroxy- and 16alpha-hydroxy estrone levels and risk of breast cancer among postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2008;17:2029–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaaks R, Rinaldi S, Key TJ, Berrino F, Peeters PH, et al. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer. 2005;12:1071–82.

    CAS  PubMed  Google Scholar 

  58. Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE. Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst. 2004;96:1856–65.

    CAS  PubMed  Google Scholar 

  59. Muti P, Bradlow HL, Micheli A, Krogh V, Freudenheim JL, et al. Estrogen metabolism and risk of breast cancer: a prospective study of the 2:16alpha-hydroxyestrone ratio in premenopausal and postmenopausal women. Epidemiology. 2000;11:635–40.

    CAS  PubMed  Google Scholar 

  60. Muti P, Westerlind K, Wu T, Grimaldi T, De Berry 3rd J, et al. Urinary estrogen metabolites and prostate cancer: a case-control study in the United States. Cancer Causes Control. 2002;13:947–55.

    PubMed  Google Scholar 

  61. Michnovicz JJ, Bradlow HL. Altered estrogen metabolism and excretion in humans following consumption of indole-3-carbinol. Nutr Cancer. 1991;16:59–66.

    CAS  PubMed  Google Scholar 

  62. Kanasaki K, Palmsten K, Sugimoto H, Ahmad S, Hamano Y, et al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature. 2008;453:1117–21.

    CAS  PubMed  Google Scholar 

  63. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87:905–31.

    CAS  PubMed  Google Scholar 

  64. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N Engl J Med. 1999;340:1801–11.

    CAS  PubMed  Google Scholar 

  65. Mendelsohn ME, Karas RH. Molecular and cellular basis of cardiovascular gender differences. Science. 2005;308:1583–7.

    CAS  PubMed  Google Scholar 

  66. Hsieh YC, Yu HP, Frink M, Suzuki T, Choudhry MA, et al. G protein-coupled receptor 30-dependent protein kinase A pathway is critical in nongenomic effects of estrogen in attenuating liver injury after trauma-hemorrhage. Am J Pathol. 2007;170:1210–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146:624–32.

    CAS  PubMed  Google Scholar 

  68. Murphy E. Estrogen signaling and cardiovascular disease. Circ Res. 2011;109:687–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Simoncini T, Mannella P, Fornari L, Caruso A, Varone G, et al. Genomic and non-genomic effects of estrogens on endothelial cells. Steroids. 2004;69:537–42.

    CAS  PubMed  Google Scholar 

  70. Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 1987;107:216–23.

    CAS  PubMed  Google Scholar 

  71. Curtis SW, Washburn T, Sewall C, DiAugustine R, Lindzey J, et al. Physiological coupling of growth factor and steroid receptor signaling pathways: estrogen receptor knockout mice lack estrogen-like response to epidermal growth factor. Proc Natl Acad Sci USA. 1996;93:12626–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature. 2000;407:538–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lahm T, Tuder RM, Petrache I. Progress in solving the sex hormone paradox in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2014;307:L7–26.

    CAS  PubMed  Google Scholar 

  74. Simoncini T, Genazzani AR, Liao JK. Nongenomic mechanisms of endothelial nitric oxide synthase activation by the selective estrogen receptor modulator raloxifene. Circulation. 2002;105:1368–73.

    CAS  PubMed  Google Scholar 

  75. Hisamoto K, Ohmichi M, Kurachi H, Hayakawa J, Kanda Y, et al. Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem. 2001;276:3459–67.

    CAS  PubMed  Google Scholar 

  76. Chambliss KL, Yuhanna IS, Anderson RG, Mendelsohn ME, Shaul PW. ERbeta has nongenomic action in caveolae. Mol Endocrinol. 2002;16:938–46.

    CAS  PubMed  Google Scholar 

  77. Sherman TS, Chambliss KL, Gibson LL, Pace MC, Mendelsohn ME, et al. Estrogen acutely activates prostacyclin synthesis in ovine fetal pulmonary artery endothelium. Am J Respir Cell Mol Biol. 2002;26:610–6.

    CAS  PubMed  Google Scholar 

  78. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, et al. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest. 1999;103:401–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shaul PW. Rapid activation of endothelial nitric oxide synthase by estrogen. Steroids. 1999;64:28–34.

    CAS  PubMed  Google Scholar 

  80. Taraseviciute A, Voelkel NF. Severe pulmonary hypertension in postmenopausal obese women. Eur J Med Res. 2006;11:198–202.

    PubMed  Google Scholar 

  81. Farha S, Asosingh K, Laskowski D, Hammel J, Dweik RA, et al. Effects of the menstrual cycle on lung function variables in women with asthma. Am J Respir Crit Care Med. 2009;180:304–10.

    PubMed  PubMed Central  Google Scholar 

  82. Johannesson M, Ludviksdottir D, Janson C. Lung function changes in relation to menstrual cycle in females with cystic fibrosis. Respir Med. 2000;94:1043–6.

    CAS  PubMed  Google Scholar 

  83. Lahm T, Patel KM, Crisostomo PR, Markel TA, Wang M, et al. Endogenous estrogen attenuates pulmonary artery vasoreactivity and acute hypoxic pulmonary vasoconstriction: the effects of sex and menstrual cycle. Am J Physiol Endocrinol Metab. 2007;293:E865–71.

    CAS  PubMed  Google Scholar 

  84. Card JW, Zeldin DC. Hormonal influences on lung function and response to environmental agents: lessons from animal models of respiratory disease. Proc Am Thorac Soc. 2009;6:588–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Melgert BN, Ray A, Hylkema MN, Timens W, Postma DS. Are there reasons why adult asthma is more common in females? Curr Allergy Asthma Rep. 2007;7:143–50.

    CAS  PubMed  Google Scholar 

  86. Gougelet A, Bouclier C, Marsaud V, Maillard S, Mueller SO, et al. Estrogen receptor alpha and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90- and immunophilin-ligands in human breast cancer cells. J Steroid Biochem Mol Biol. 2005;94:71–81.

    CAS  PubMed  Google Scholar 

  87. Garban HJ, Marquez-Garban DC, Pietras RJ, Ignarro LJ. Rapid nitric oxide-mediated S-nitrosylation of estrogen receptor: regulation of estrogen-dependent gene transcription. Proc Natl Acad Sci USA. 2005;102:2632–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Martinez-Galan J, Torres-Torres B, Nunez MI, Lopez-Penalver J, Del Moral R, et al. ESR1 gene promoter region methylation in free circulating DNA and its correlation with estrogen receptor protein expression in tumor tissue in breast cancer patients. BMC Cancer. 2014;14:59.

    PubMed  PubMed Central  Google Scholar 

  89. Katzenellenbogen BS. Mechanisms of action and cross-talk between estrogen receptor and progesterone receptor pathways. J Soc Gynecol Investig. 2000;7:S33–7.

    CAS  PubMed  Google Scholar 

  90. Kraus WL, Weis KE, Katzenellenbogen BS. Inhibitory cross-talk between steroid hormone receptors: differential targeting of estrogen receptor in the repression of its transcriptional activity by agonist- and antagonist-occupied progestin receptors. Mol Cell Biol. 1995;15:1847–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Levin ER. Cell localization, physiology, and nongenomic actions of estrogen receptors. J Appl Physiol. 1985;91:1860–7.

    Google Scholar 

  92. Giangrande PH, McDonnell DP. The A and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene. Recent Prog Horm Res. 1999;54:291–313. discussion 313–4.

    CAS  PubMed  Google Scholar 

  93. Barberis MC, Veronese S, Bauer D, De Juli E, Harari S. Immunocytochemical detection of progesterone receptors. A study in a patient with primary pulmonary hypertension. Chest. 1995;107:869–72.

    CAS  PubMed  Google Scholar 

  94. Cahill MA. Progesterone receptor membrane component 1: an integrative review. J Steroid Biochem Mol Biol. 2007;105:16–36.

    CAS  PubMed  Google Scholar 

  95. Swerdloff RS, Walsh PC, Odell WD. Control of LH and FSH secretion in the male: evidence that aromatization of androgens to estradiol is not required for inhibition of gonadotropin secretion. Steroids. 1972;20:13–22.

    CAS  PubMed  Google Scholar 

  96. Lamont KR, Tindall DJ. Androgen regulation of gene expression. Adv Cancer Res. 2010;107:137–62.

    CAS  PubMed  Google Scholar 

  97. Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, et al. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation. 1998;98:256–61.

    CAS  PubMed  Google Scholar 

  98. Mikkonen L, Pihlajamaa P, Sahu B, Zhang FP, Janne OA. Androgen receptor and androgen-dependent gene expression in lung. Mol Cell Endocrinol. 2010;317:14–24.

    CAS  PubMed  Google Scholar 

  99. Welter BH, Hansen EL, Saner KJ, Wei Y, Price TM. Membrane-bound progesterone receptor expression in human aortic endothelial cells. J Histochem Cytochem. 2003;51:1049–55.

    CAS  PubMed  Google Scholar 

  100. Bonnet S, Dumas-de-La-Roque E, Begueret H, Marthan R, Fayon M, et al. Dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary hypertension. Proc Natl Acad Sci USA. 2003;100:9488–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fujimoto R, Morimoto I, Morita E, Sugimoto H, Ito Y, et al. Androgen receptors, 5 alpha-reductase activity and androgen-dependent proliferation of vascular smooth muscle cells. J Steroid Biochem Mol Biol. 1994;50:169–74.

    CAS  PubMed  Google Scholar 

  102. Nakamura Y, Suzuki T, Inoue T, Tazawa C, Ono K, et al. Progesterone receptor subtypes in vascular smooth muscle cells of human aorta. Endocr J. 2005;52:245–52.

    CAS  PubMed  Google Scholar 

  103. Ingegno MD, Money SR, Thelmo W, Greene GL, Davidian M, et al. Progesterone receptors in the human heart and great vessels. Lab Invest. 1988;59:353–6.

    CAS  PubMed  Google Scholar 

  104. Jones RD, English KM, Pugh PJ, Morice AH, Jones TH, et al. Pulmonary vasodilatory action of testosterone: evidence of a calcium antagonistic action. J Cardiovasc Pharmacol. 2002;39:814–23.

    CAS  PubMed  Google Scholar 

  105. Williams MR, Ling S, Dawood T, Hashimura K, Dai A, et al. Dehydroepiandrosterone inhibits human vascular smooth muscle cell proliferation independent of ARs and ERs. J Clin Endocrinol Metab. 2002;87:176–81.

    CAS  PubMed  Google Scholar 

  106. Liu D, Dillon JS. Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Galpha(i2,3). J Biol Chem. 2002;277:21379–88.

    CAS  PubMed  Google Scholar 

  107. Beato M, Klug J. Steroid hormone receptors: an update. Hum Reprod Update. 2000;6:225–36.

    CAS  PubMed  Google Scholar 

  108. McKenna NJ, O’Malley BW. Minireview: nuclear receptor coactivators–an update. Endocrinology. 2002;143:2461–5.

    CAS  Google Scholar 

  109. Edwards DP. Regulation of signal transduction pathways by estrogen and progesterone. Annu Rev Physiol. 2005;67:335–76.

    CAS  PubMed  Google Scholar 

  110. Lee YF, Shyr CR, Thin TH, Lin WJ, Chang C. Convergence of two repressors through heterodimer formation of androgen receptor and testicular orphan receptor-4: a unique signaling pathway in the steroid receptor superfamily. Proc Natl Acad Sci USA. 1999;96:14724–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou ZX, Wong CI, Sar M, Wilson EM. The androgen receptor: an overview. Recent Prog Horm Res. 1994;49:249–74.

    CAS  PubMed  Google Scholar 

  112. Carey MA, Card JW, Voltz JW, Arbes Jr SJ, Germolec DR, et al. It’s all about sex: gender, lung development and lung disease. Trends Endocrinol Metab. 2007;18:308–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Becklake MR, Kauffmann F. Gender differences in airway behaviour over the human life span. Thorax. 1999;54:1119–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dezateux C, Stocks J. Lung development and early origins of childhood respiratory illness. Br Med Bull. 1997;53:40–57.

    CAS  PubMed  Google Scholar 

  115. Thurlbeck WM. Postnatal growth and development of the lung. Am Rev Respir Dis. 1975;111:803–44.

    CAS  PubMed  Google Scholar 

  116. Thurlbeck WM, Angus GE. Growth and aging of the normal human lung. Chest. 1975;67:3s–6.

    CAS  PubMed  Google Scholar 

  117. Torday JS, Nielsen HC. The sex difference in fetal lung surfactant production. Exp Lung Res. 1987;12:1–19.

    CAS  PubMed  Google Scholar 

  118. Fleisher B, Kulovich MV, Hallman M, Gluck L. Lung profile: sex differences in normal pregnancy. Obstet Gynecol. 1985;66:327–30.

    CAS  PubMed  Google Scholar 

  119. Dammann CE, Ramadurai SM, McCants DD, Pham LD, Nielsen HC. Androgen regulation of signaling pathways in late fetal mouse lung development. Endocrinology. 2000;141:2923–9.

    CAS  PubMed  Google Scholar 

  120. Nielsen HC, Martin A, Volpe MV, Hatzis D, Vosatka RJ. Growth factor control of growth and epithelial differentiation in embryonic lungs. Biochem Mol Med. 1997;60:38–48.

    CAS  PubMed  Google Scholar 

  121. Caniggia I, Tseu I, Han RN, Smith BT, Tanswell K, et al. Spatial and temporal differences in fibroblast behavior in fetal rat lung. Am J Physiol. 1991;261:L424–33.

    CAS  PubMed  Google Scholar 

  122. Pezzi V, Mathis JM, Rainey WE, Carr BR. Profiling transcript levels for steroidogenic enzymes in fetal tissues. J Steroid Biochem Mol Biol. 2003;87:181–9.

    CAS  PubMed  Google Scholar 

  123. Provost PR, Tremblay Y. Genes involved in the adrenal pathway of glucocorticoid synthesis are transiently expressed in the developing lung. Endocrinology. 2005;146:2239–45.

    CAS  PubMed  Google Scholar 

  124. Mead J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am Rev Respir Dis. 1980;121:339–42.

    CAS  PubMed  Google Scholar 

  125. Taussig LM, Cota K, Kaltenborn W. Different mechanical properties of the lung in boys and girls. Am Rev Respir Dis. 1981;123:640–3.

    CAS  PubMed  Google Scholar 

  126. Schrader PC, Quanjer PH, Olievier IC. Respiratory muscle force and ventilatory function in adolescents. Eur Respir J. 1988;1:368–75.

    CAS  PubMed  Google Scholar 

  127. Turner JM, Mead J, Wohl ME. Elasticity of human lungs in relation to age. J Appl Physiol. 1968;25:664–71.

    CAS  PubMed  Google Scholar 

  128. Gibson GJ, Pride NB, O’Cain C, Quagliato R. Sex and age differences in pulmonary mechanics in normal nonsmoking subjects. J Appl Physiol. 1976;41:20–5.

    CAS  PubMed  Google Scholar 

  129. Pride NB. Ageing and changes in lung mechanics. Eur Respir J. 2005;26:563–5.

    CAS  PubMed  Google Scholar 

  130. Greenlee MM, Mitzelfelt JD, Yu L, Yue Q, Duke BJ, et al. Estradiol activates epithelial sodium channels in rat alveolar cells through the G protein-coupled estrogen receptor. Am J Physiol Lung Cell Mol Physiol. 2013;305(11):L878–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tolep K, Kelsen SG. Effect of aging on respiratory skeletal muscles. Clin Chest Med. 1993;14:363–78.

    CAS  PubMed  Google Scholar 

  132. Velden VH, Versnel HF. Bronchial epithelium: morphology, function and pathophysiology in asthma. Eur Cytokine Netw. 1998;9:585–97.

    CAS  PubMed  Google Scholar 

  133. Levine SJ. Bronchial epithelial cell-cytokine interactions in airway inflammation. J Investig Med. 1995;43:241–9.

    CAS  PubMed  Google Scholar 

  134. Stavrides JC. Lung carcinogenesis: pivotal role of metals in tobacco smoke. Free Radic Biol Med. 2006;41:1017–30.

    CAS  PubMed  Google Scholar 

  135. Kirsch EA, Yuhanna IS, Chen Z, German Z, Sherman TS, et al. Estrogen acutely stimulates endothelial nitric oxide synthase in H441 human airway epithelial cells. Am J Respir Cell Mol Biol. 1999;20:658–66.

    CAS  PubMed  Google Scholar 

  136. Ivanova MM, Mazhawidza W, Dougherty SM, Klinge CM. Sex differences in estrogen receptor subcellular location and activity in lung adenocarcinoma cells. Am J Respir Cell Mol Biol. 2010;42:320–30.

    CAS  PubMed  Google Scholar 

  137. Barnes PJ. Nitric oxide and airway disease. Ann Med. 1995;27:389–93.

    CAS  PubMed  Google Scholar 

  138. Watkins DN, Garlepp MJ, Thompson PJ. Regulation of the inducible cyclo-oxygenase pathway in human cultured airway epithelial (A549) cells by nitric oxide. Br J Pharmacol. 1997;121:1482–8.

    CAS  PubMed  Google Scholar 

  139. Krasteva G, Pfeil U, Filip AM, Lips KS, Kummer W, et al. Caveolin-3 and eNOS colocalize and interact in ciliated airway epithelial cells in the rat. Int J Biochem Cell Biol. 2007;39:615–25.

    CAS  PubMed  Google Scholar 

  140. Mandhane PJ, Hanna SE, Inman MD, Duncan JM, Greene JM, et al. Changes in exhaled nitric oxide related to estrogen and progesterone during the menstrual cycle. Chest. 2009;136:1301–7.

    CAS  PubMed  Google Scholar 

  141. Sud N, Wiseman DA, Black SM. Caveolin 1 is required for the activation of endothelial nitric oxide synthase in response to 17beta-estradiol. Mol Endocrinol. 2010;24:1637–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Hamad AM, Clayton A, Islam B, Knox AJ. Guanylyl cyclases, nitric oxide, natriuretic peptides, and airway smooth muscle function. Am J Physiol Lung Cell Mol Physiol. 2003;285:L973–83.

    CAS  PubMed  Google Scholar 

  143. Townsend EA, Meuchel LW, Thompson MA, Pabelick CM, Prakash YS. Estrogen increases nitric-oxide production in human bronchial epithelium. J Pharmacol Exp Ther. 2011;339:815–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kharitonov SA, Logan-Sinclair RB, Busset CM, Shinebourne EA. Peak expiratory nitric oxide differences in men and women: relation to the menstrual cycle. Br Heart J. 1994;72:243–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Oguzulgen IK, Turktas H, Erbas D. Airway inflammation in premenstrual asthma. J Asthma. 2002;39:517–22.

    PubMed  Google Scholar 

  146. Morris NH, Sooranna SR, Steer PJ, Warren JB. The effect of the menstrual cycle on exhaled nitric oxide and urinary nitrate concentration. Eur J Clin Invest. 1996;26:481–4.

    CAS  PubMed  Google Scholar 

  147. Vihko P, Herrala A, Harkonen P, Isomaa V, Kaija H, et al. Control of cell proliferation by steroids: the role of 17HSDs. Mol Cell Endocrinol. 2006;248:141–8.

    CAS  PubMed  Google Scholar 

  148. Folkerd EJ, Dowsett M. Influence of sex hormones on cancer progression. J Clin Oncol. 2010;28:4038–44.

    CAS  PubMed  Google Scholar 

  149. Marquez-Garban DC, Chen HW, Fishbein MC, Goodglick L, Pietras RJ. Estrogen receptor signaling pathways in human non-small cell lung cancer. Steroids. 2007;72:135–43.

    CAS  PubMed  Google Scholar 

  150. Plante J, Simard M, Rantakari P, Cote M, Provost PR, et al. Epithelial cells are the major site of hydroxysteroid (17beta) dehydrogenase 2 and androgen receptor expression in fetal mouse lungs during the period overlapping the surge of surfactant. J Steroid Biochem Mol Biol. 2009;117:139–45.

    CAS  PubMed  Google Scholar 

  151. Provost PR, Simard M, Tremblay Y. A link between lung androgen metabolism and the emergence of mature epithelial type II cells. Am J Respir Crit Care Med. 2004;170:296–305.

    PubMed  Google Scholar 

  152. Marquez DC, Lee J, Lin T, Pietras RJ. Epidermal growth factor receptor and tyrosine phosphorylation of estrogen receptor. Endocrine. 2001;16:73–81.

    CAS  PubMed  Google Scholar 

  153. Massaro D, Clerch LB, Massaro GD. Estrogen receptor-alpha regulates pulmonary alveolar loss and regeneration in female mice: morphometric and gene expression studies. Am J Physiol Lung Cell Mol Physiol. 2007;293:L222–8.

    CAS  PubMed  Google Scholar 

  154. Massaro D, Massaro GD. Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice. Am J Physiol Lung Cell Mol Physiol. 2004;287:L1154–9.

    CAS  PubMed  Google Scholar 

  155. Pata Ö, Atiş S, Utku Öz A, Yazici G, Tok E, et al. The effects of hormone replacement therapy type on pulmonary functions in postmenopausal women. Maturitas. 2003;46:213–8.

    CAS  PubMed  Google Scholar 

  156. Schmidt C, Klammt J, Thome UH, Laube M. The interaction of glucocorticoids and progesterone distinctively affects epithelial sodium transport. Lung. 2014;192:935–46.

    CAS  PubMed  Google Scholar 

  157. Laube M, Kuppers E, Thome UH. Modulation of sodium transport in alveolar epithelial cells by estradiol and progesterone. Pediatr Res. 2011;69:200–5.

    CAS  PubMed  Google Scholar 

  158. Fronius M. Treatment of pulmonary edema by ENaC activators/stimulators. Curr Mol Pharmacol. 2013;6:13–27.

    CAS  PubMed  Google Scholar 

  159. Collawn JF, Lazrak A, Bebok Z, Matalon S. The CFTR and ENaC debate: how important is ENaC in CF lung disease? Am J Physiol Lung Cell Mol Physiol. 2012;302(11):L1141–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Degano B, Prevost MC, Berger P, Molimard M, Pontier S, et al. Estradiol decreases the acetylcholine-elicited airway reactivity in ovariectomized rats through an increase in epithelial acetylcholinesterase activity. Am J Respir Crit Care Med. 2001;164:1849–54.

    CAS  PubMed  Google Scholar 

  161. Degano B, Mourlanette P, Valmary S, Pontier S, Prevost MC, et al. Differential effects of low and high-dose estradiol on airway reactivity in ovariectomized rats. Respir Physiol Neurobiol. 2003;138:265–74.

    CAS  PubMed  Google Scholar 

  162. Kouloumenta V, Hatziefthimiou A, Paraskeva E, Gourgoulianis K, Molyvdas PA. Non-genomic effect of testosterone on airway smooth muscle. Br J Pharmacol. 2006;149:1083–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Pang JJ, Xu XB, Li HF, Zhang XY, Zheng TZ, et al. Inhibition of beta-estradiol on trachea smooth muscle contraction in vitro and in vivo. Acta Pharmacol Sin. 2002;23:273–7.

    CAS  PubMed  Google Scholar 

  164. Dimitropoulou C, White RE, Ownby DR, Catravas JD. Estrogen reduces carbachol-induced constriction of asthmatic airways by stimulating large-conductance voltage and calcium-dependent potassium channels. Am J Respir Cell Mol Biol. 2005;32:239–47.

    CAS  PubMed  Google Scholar 

  165. Townsend EA, Thompson MA, Pabelick CM, Prakash YS. Rapid effects of estrogen on intracellular Ca2+ regulation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2010;298:L521–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Foster PS, Goldie RG, Paterson JW. Effect of steroids on beta-adrenoceptor-mediated relaxation of pig bronchus. Br J Pharmacol. 1983;78:441–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Perusquia M, Hernandez R, Montano LM, Villalon CM, Campos MG. Inhibitory effect of sex steroids on guinea-pig airway smooth muscle contractions. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1997;118:5–10.

    CAS  PubMed  Google Scholar 

  168. Hellings PW, Vandekerckhove P, Claeys R, Billen J, Kasran A, et al. Progesterone increases airway eosinophilia and hyper-responsiveness in a murine model of allergic asthma. Clin Exp Allergy. 2003;33:1457–63.

    CAS  PubMed  Google Scholar 

  169. de Marco R, Locatelli F, Sunyer J, Burney P. Differences in incidence of reported asthma related to age in men and women. A retrospective analysis of the data of the European Respiratory Health Survey. Am J Respir Crit Care Med. 2000;162:68–74.

    PubMed  Google Scholar 

  170. Postma DS. Gender differences in asthma development and progression. Gend Med. 2007;4(Suppl B):S133–46.

    PubMed  Google Scholar 

  171. Murphy VE, Gibson PG. Premenstrual asthma: prevalence, cycle-to-cycle variability and relationship to oral contraceptive use and menstrual symptoms. J Asthma. 2008;45:696–704.

    PubMed  Google Scholar 

  172. Hanley SP. Asthma variation with menstruation. Br J Dis Chest. 1981;75:306–8.

    CAS  PubMed  Google Scholar 

  173. Bellia V, Augugliaro G. Asthma and menopause. Monaldi Arch Chest Dis. 2007;67:125–7.

    CAS  PubMed  Google Scholar 

  174. Ticconi C, Pietropolli A, Piccione E. Estrogen replacement therapy and asthma. Pulm Pharmacol Ther. 2013;26:617–23.

    CAS  PubMed  Google Scholar 

  175. Stamatiou R, Paraskeva E, Papagianni M, Molyvdas PA, Hatziefthimiou A. The mitogenic effect of testosterone and 17beta-estradiol on airway smooth muscle cells. Steroids. 2011;76:400–8.

    CAS  PubMed  Google Scholar 

  176. Lazaar AL, Panettieri Jr RA. Airway smooth muscle: a modulator of airway remodeling in asthma. J Allergy Clin Immunol. 2005;116:488–95. quiz 496.

    PubMed  Google Scholar 

  177. Dashtaki R, Whorton AR, Murphy TM, Chitano P, Reed W, et al. Dehydroepiandrosterone and analogs inhibit DNA binding of AP-1 and airway smooth muscle proliferation. J Pharmacol Exp Ther. 1998;285:876–83.

    CAS  PubMed  Google Scholar 

  178. Gharaee-Kermani M, Hatano K, Nozaki Y, Phan SH. Gender-based differences in bleomycin-induced pulmonary fibrosis. Am J Pathol. 2005;166:1593–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Voltz JW, Card JW, Carey MA, Degraff LM, Ferguson CD, et al. Male sex hormones exacerbate lung function impairment after bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2008;39:45–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Kondo H, Kasuga H, Noumura T. Effects of various steroids on in vitro lifespan and cell growth of human fetal lung fibroblasts (WI-38). Mech Ageing Dev. 1983;21:335–44.

    CAS  PubMed  Google Scholar 

  181. Flores-Delgado G, Bringas P, Buckley S, Anderson KD, Warburton D. Nongenomic estrogen action in human lung myofibroblasts. Biochem Biophys Res Commun. 2001;283:661–7.

    CAS  PubMed  Google Scholar 

  182. Markova MS, Zeskand J, McEntee B, Rothstein J, Jimenez SA, et al. A role for the androgen receptor in collagen content of the skin. J Investig Dermatol. 2004;123:1052–6.

    CAS  PubMed  Google Scholar 

  183. Badesch DB, Raskob GE, Elliott CG, Krichman AM, Farber HW, et al. Pulmonary arterial hypertension: baseline characteristics from the REVEAL Registry. Chest. 2010;137:376–87.

    PubMed  Google Scholar 

  184. Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010;122:164–72.

    PubMed  Google Scholar 

  185. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006;173:1023–30.

    PubMed  Google Scholar 

  186. Selej M, Brown J, Lockett A, Albrecht M, Schweitzer K, et al. Hypoxia increases expression of estrogen receptor (ER)-beta in vivo and in vitro. Am J Respir Crit Care Med. 2013;187:A2257.

    Google Scholar 

  187. Selej M, Lockett A, Albrecht M, Petrache I, Lahm T. Hypoxia increases estrogen receptor beta expression in cultured rat pulmonary artery endothelial cells. Am J Respir Crit Care Med. 2012;185:A4817.

    Google Scholar 

  188. Mair KM, Wright AF, Duggan N, Rowlands DJ, Hussey MJ, et al. Sex-dependent influence of endogenous estrogen in pulmonary hypertension. Am J Respir Crit Care Med. 2014;190:456–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Filardo EJ, Quinn JA, Frackelton Jr AR, Bland KI. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol. 2002;16:70–84.

    CAS  PubMed  Google Scholar 

  190. Silverman EK, Weiss ST, Drazen JM, Chapman HA, Carey V, et al. Gender-related differences in severe, early-onset chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;162:2152–8.

    CAS  PubMed  Google Scholar 

  191. Lahm T, Crisostomo PR, Markel TA, Wang M, Weil BR, et al. The effects of estrogen on pulmonary artery vasoreactivity and hypoxic pulmonary vasoconstriction: potential new clinical implications for an old hormone. Crit Care Med. 2008;36:2174–83.

    CAS  PubMed  Google Scholar 

  192. Bolego C, Cignarella A, Sanvito P, Pelosi V, Pellegatta F, et al. The acute estrogenic dilation of rat aorta is mediated solely by selective estrogen receptor-alpha agonists and is abolished by estrogen deprivation. J Pharmacol Exp Ther. 2005;313:1203–8.

    CAS  PubMed  Google Scholar 

  193. Douglas G, Cruz MN, Poston L, Gustafsson JA, Kublickiene K. Functional characterization and sex differences in small mesenteric arteries of the estrogen receptor-beta knockout mouse. Am J Physiol Regul Integr Comp Physiol. 2008;294:R112–20.

    CAS  PubMed  Google Scholar 

  194. Lahm T, Crisostomo PR, Markel TA, Wang M, Wang Y, et al. Selective estrogen receptor-alpha and estrogen receptor-beta agonists rapidly decrease pulmonary artery vasoconstriction by a nitric oxide-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1486–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Earley S, Resta TC. Estradiol attenuates hypoxia-induced pulmonary endothelin-1 gene expression. Am J Physiol Lung Cell Mol Physiol. 2002;283:L86–93.

    CAS  PubMed  Google Scholar 

  196. Node K, Kitakaze M, Kosaka H, Minamino T, Funaya H, et al. Amelioration of ischemia- and reperfusion-induced myocardial injury by 17β-estradiol: role of nitric oxide and calcium-activated potassium channels. Circulation. 1997;96:1953–63.

    CAS  PubMed  Google Scholar 

  197. Prakash YS, Togaibayeva AA, Kannan MS, Miller VM, Fitzpatrick LA, et al. Estrogen increases Ca2+ efflux from female porcine coronary arterial smooth muscle. Am J Physiol. 1999;276:H926–34.

    CAS  PubMed  Google Scholar 

  198. Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2005;25:1767–75.

    CAS  PubMed  Google Scholar 

  199. Sakao S, Tanabe N, Tatsumi K. The estrogen paradox in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2010;299:L435–8.

    CAS  PubMed  Google Scholar 

  200. Smith AM, Jones RD, Channer KS. The influence of sex hormones on pulmonary vascular reactivity: possible vasodilator therapies for the treatment of pulmonary hypertension. Curr Vasc Pharmacol. 2006;4:9–15.

    CAS  PubMed  Google Scholar 

  201. Osipenko ON, Alexander D, MacLean MR, Gurney AM. Influence of chronic hypoxia on the contributions of non-inactivating and delayed rectifier K currents to the resting potential and tone of rat pulmonary artery smooth muscle. Br J Pharmacol. 1998;124:1335–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Millen J, MacLean MR, Houslay MD. Hypoxia-induced remodelling of PDE4 isoform expression and cAMP handling in human pulmonary artery smooth muscle cells. Eur J Cell Biol. 2006;85:679–91.

    CAS  PubMed  Google Scholar 

  203. Xu DQ, Luo Y, Liu Y, Wang J, Zhang B, et al. Beta-estradiol attenuates hypoxic pulmonary hypertension by stabilizing the expression of p27kip1 in rats. Respir Res. 2010;11:182.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Xu D, Niu W, Luo Y, Zhang B, Liu M, et al. Endogenous estrogen attenuates hypoxia-induced pulmonary hypertension by inhibiting pulmonary arterial vasoconstriction and pulmonary arterial smooth muscle cells proliferation. Int J Med Sci. 2013;10:771–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Tofovic SP, Zhang X, Zhu H, Jackson EK, Rafikova O, et al. 2-Ethoxyestradiol is antimitogenic and attenuates monocrotaline-induced pulmonary hypertension and vascular remodeling. Vascul Pharmacol. 2008;48:174–83.

    CAS  PubMed  Google Scholar 

  206. Lahm T, Albrecht M, Fisher AJ, Selej M, Patel NG, et al. 17beta-Estradiol attenuates hypoxic pulmonary hypertension via estrogen receptor-mediated effects. Am J Respir Crit Care Med. 2012;185:965–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Farha S, Asosingh K, Laskowski D, Licina L, Sekigushi H, et al. Pulmonary gas transfer related to markers of angiogenesis during the menstrual cycle. J Appl Physiol. 2007;103:1789–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Malamitsi-Puchner A, Sarandakou A, Tziotis J, Stavreus-Evers A, Tzonou A, et al. Circulating angiogenic factors during periovulation and the luteal phase of normal menstrual cycles. Fertil Steril. 2004;81:1322–7.

    CAS  PubMed  Google Scholar 

  209. Demir R, Yaba A, Huppertz B. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 2010;112:203–14.

    CAS  PubMed  Google Scholar 

  210. English KM, Jones RD, Jones TH, Morice AH, Channer KS. Gender differences in the vasomotor effects of different steroid hormones in rat pulmonary and coronary arteries. Horm Metab Res. 2001;33:645–52.

    CAS  PubMed  Google Scholar 

  211. Li HF, Zheng TZ, Li W, Qu SY, Zhang CL. Effect of progesterone on the contractile response of isolated pulmonary artery in rabbits. Can J Physiol Pharmacol. 2001;79:545–50.

    CAS  PubMed  Google Scholar 

  212. Smith AM, Bennett RT, Jones TH, Cowen ME, Channer KS, et al. Characterization of the vasodilatory action of testosterone in the human pulmonary circulation. Vasc Health Risk Manag. 2008;4:1459–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Rowell KO, Hall J, Pugh PJ, Jones TH, Channer KS, et al. Testosterone acts as an efficacious vasodilator in isolated human pulmonary arteries and veins: evidence for a biphasic effect at physiological and supra-physiological concentrations. J Endocrinol Invest. 2009;32:718–23.

    CAS  PubMed  Google Scholar 

  214. Farrukh IS, Peng W, Orlinska U, Hoidal JR. Effect of dehydroepiandrosterone on hypoxic pulmonary vasoconstriction: a Ca(2+)-activated K(+)-channel opener. Am J Physiol. 1998;274:L186–95.

    CAS  PubMed  Google Scholar 

  215. Gupte SA, Li KX, Okada T, Sato K, Oka M. Inhibitors of pentose phosphate pathway cause vasodilation: involvement of voltage-gated potassium channels. J Pharmacol Exp Ther. 2002;301:299–305.

    CAS  PubMed  Google Scholar 

  216. Gordon G, Mackow MC, Levy HR. On the mechanism of interaction of steroids with human glucose 6-phosphate dehydrogenase. Arch Biochem Biophys. 1995;318:25–9.

    CAS  PubMed  Google Scholar 

  217. Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, et al. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem. 1998;273:10609–17.

    CAS  PubMed  Google Scholar 

  218. Simoncini T, Mannella P, Fornari L, Varone G, Caruso A, et al. Dehydroepiandrosterone modulates endothelial nitric oxide synthesis via direct genomic and nongenomic mechanisms. Endocrinology. 2003;144:3449–55.

    CAS  PubMed  Google Scholar 

  219. Dessouroux A, Akwa Y, Baulieu EE. DHEA decreases HIF-1alpha accumulation under hypoxia in human pulmonary artery cells: potential role in the treatment of pulmonary arterial hypertension. J Steroid Biochem Mol Biol. 2008;109:81–9.

    CAS  PubMed  Google Scholar 

  220. Dumas de La Roque E, Savineau JP, Metivier AC, Billes MA, Kraemer JP, et al. Dehydroepiandrosterone (DHEA) improves pulmonary hypertension in chronic obstructive pulmonary disease (COPD): a pilot study. Ann Endocrinol (Paris). 2012;73:20–5.

    CAS  Google Scholar 

  221. Paulin R, Meloche J, Jacob MH, Bisserier M, Courboulin A, et al. Dehydroepiandrosterone inhibits the Src/STAT3 constitutive activation in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2011;301:H1798–809.

    CAS  PubMed  Google Scholar 

  222. Alzoubi A, Toba M, Abe K, O’Neill KD, Rocic P, et al. Dehydroepiandrosterone restores right ventricular structure and function in rats with severe pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2013;304:H1708–18.

    CAS  PubMed  Google Scholar 

  223. Straub RH. The complex role of estrogens in inflammation. Endocr Rev. 2007;28:521–74.

    CAS  PubMed  Google Scholar 

  224. Gilliver SC. Sex steroids as inflammatory regulators. J Steroid Biochem Mol Biol. 2010;120:105–15.

    CAS  PubMed  Google Scholar 

  225. Pierdominici M, Maselli A, Colasanti T, Giammarioli AM, Delunardo F, et al. Estrogen receptor profiles in human peripheral blood lymphocytes. Immunol Lett. 2010;132:79–85.

    CAS  PubMed  Google Scholar 

  226. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest. 2000;106:1229–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Lambert KC, Curran EM, Judy BM, Milligan GN, Lubahn DB, et al. Estrogen receptor alpha (ERalpha) deficiency in macrophages results in increased stimulation of CD4+ T cells while 17beta-estradiol acts through ERalpha to increase IL-4 and GATA-3 expression in CD4+ T cells independent of antigen presentation. J Immunol. 2005;175:5716–23.

    CAS  PubMed  Google Scholar 

  228. Chiu L, Nishimura M, Ishii Y, Nieda M, Maeshima M, et al. Enhancement of the expression of progesterone receptor on progesterone-treated lymphocytes after immunotherapy in unexplained recurrent spontaneous abortion. Am J Reprod Immunol. 1996;35:552–7.

    CAS  PubMed  Google Scholar 

  229. Mansour I, Reznikoff-Etievant MF, Netter A. No evidence for the expression of the progesterone receptor on peripheral blood lymphocytes during pregnancy. Hum Reprod. 1994;9:1546–9.

    CAS  PubMed  Google Scholar 

  230. Hardy DB, Janowski BA, Corey DR, Mendelson CR. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol Endocrinol. 2006;20:2724–33.

    CAS  PubMed  Google Scholar 

  231. Piccinni MP, Giudizi MG, Biagiotti R, Beloni L, Giannarini L, et al. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol. 1995;155:128–33.

    CAS  PubMed  Google Scholar 

  232. Huber SA, Kupperman J, Newell MK. Hormonal regulation of CD4(+) T-cell responses in coxsackievirus B3-induced myocarditis in mice. J Virol. 1999;73:4689–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Namazi MR. The Th1-promoting effects of dehydroepiandrosterone can provide an explanation for the stronger Th1-immune response of women. Iran J Allergy Asthma Immunol. 2009;8:65–9.

    CAS  PubMed  Google Scholar 

  234. Yu CK, Liu YH, Chen CL. Dehydroepiandrosterone attenuates allergic airway inflammation in Dermatophagoides farinae-sensitized mice. J Microbiol Immunol Infect. 2002;35:199–202.

    CAS  PubMed  Google Scholar 

  235. Suzuki T, Yu HP, Hsieh YC, Choudhry MA, Bland KI, et al. Estrogen-mediated activation of non-genomic pathway improves macrophages cytokine production following trauma-hemorrhage. J Cell Physiol. 2008;214:662–72.

    CAS  PubMed  Google Scholar 

  236. Katayama ML, Federico MH, Brentani RR, Brentani MM. Eosinophil accumulation in rat uterus following estradiol administration is modulated by laminin and its integrin receptors. Cell Adhes Commun. 1998;5:409–24.

    CAS  PubMed  Google Scholar 

  237. Hamano N, Terada N, Maesako K, Numata T, Konno A. Effect of sex hormones on eosinophilic inflammation in nasal mucosa. Allergy Asthma Proc. 1998;19:263–9.

    CAS  PubMed  Google Scholar 

  238. Vasiadi M, Kempuraj D, Boucher W, Kalogeromitros D, Theoharides TC. Progesterone inhibits mast cell secretion. Int J Immunopathol Pharmacol. 2006;19:787–94.

    CAS  PubMed  Google Scholar 

  239. Vliagoftis H, Dimitriadou V, Boucher W, Rozniecki JJ, Correia I, et al. Estradiol augments while tamoxifen inhibits rat mast cell secretion. Int Arch Allergy Immunol. 1992;98:398–409.

    CAS  PubMed  Google Scholar 

  240. Tchernitchin AN, Barrera J, Arroyo P, Mena MA, Vilches K, et al. Degranulatory action of estradiol on blood eosinophil leukocytes in vivo and in vitro. Agents Actions. 1985;17:60–6.

    CAS  PubMed  Google Scholar 

  241. Mayo JC, Sainz RM, Antolin I, Uria H, Menendez-Pelaez A, et al. Androgen-dependent mast cell degranulation in the Harderian gland of female Syrian hamsters: in vivo and organ culture evidence. Anat Embryol (Berl). 1997;196:133–40.

    CAS  Google Scholar 

  242. Gilroy RJ, Mangura BT, Lavietes MH. Rib cage and abdominal volume displacements during breathing in pregnancy. Am Rev Respir Dis. 1988;137:668–72.

    CAS  PubMed  Google Scholar 

  243. Turner AF. The chest radiograph in pregnancy. Clin Obstet Gynecol. 1975;18:65–74.

    CAS  PubMed  Google Scholar 

  244. Weinberger SE, Weiss ST, Cohen WR, Weiss JW, Johnson TS. Pregnancy and the lung. Am Rev Respir Dis. 1980;121:559–81.

    CAS  PubMed  Google Scholar 

  245. Liberatore SM, Pistelli R, Patalano F, Moneta E, Incalzi RA, et al. Respiratory function during pregnancy. Respiration. 1984;46:145–50.

    CAS  PubMed  Google Scholar 

  246. Yannone ME. Plasma progesterone levels in normal pregnancy, labor, and the puerperium. I. Method of assay. Am J Obstet Gynecol. 1968;101:1054–7.

    CAS  PubMed  Google Scholar 

  247. Longcope C, Gorbach S, Goldin B, Woods M, Dwyer J, et al. The effect of a low fat diet on estrogen metabolism. J Clin Endocrinol Metab. 1987;64:1246–50.

    CAS  PubMed  Google Scholar 

  248. Lakhani NJ, Sarkar MA, Venitz J, Figg WD. 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy. 2003;23:165–72.

    CAS  PubMed  Google Scholar 

  249. Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab. 1984;59:551–5.

    CAS  PubMed  Google Scholar 

  250. Mohr BA, Guay AT, O’Donnell AB, McKinlay JB. Normal, bound and nonbound testosterone levels in normally ageing men: results from the Massachusetts Male Ageing Study. Clin Endocrinol (Oxf). 2005;62:64–73.

    CAS  Google Scholar 

  251. Stricker R, Eberhart R, Chevailler MC, Quinn FA, Bischof P, et al. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med. 2006;44:883–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Lahm MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frump, A.L., Lahm, T. (2016). Sex Hormone Signaling in the Lung in Health and Disease: Airways, Parenchyma, and Pulmonary Vasculature. In: Hemnes, A. (eds) Gender, Sex Hormones and Respiratory Disease. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-23998-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23998-9_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-23996-5

  • Online ISBN: 978-3-319-23998-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics