Skip to main content

SERS Investigations of Cells, Viruses and Microorganisms

  • Chapter
  • First Online:
Surface-Enhanced Raman Spectroscopy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 2835 Accesses

Abstract

Spectroscopic analysis of various species distributed inside living cells or microorganisms is currently one of the main challenges for development of SERS applications. This chapter will focus on the main principles of intracellular SERS studies and SERS detection along with identification of viruses and microorganisms. Intracellular SERS detection is based on measurement of SERS signal from metallic nanoparticles or nanoaggregates delivered inside the cell. Chemical probing in cells can be obtained by intrinsic SERS spectra from bare nanoparticles. SERS tags consisting of metallic nanoparticles and RRMs enable an assignment of intrinsic SERS signatures to specific locations where the tag is targeted. The spectra are dominated by spectral features of nucleic acids and proteins. The intracellular pH can be monitored via the SERS spectrum of SERS tag containing a molecule sensitive to pH (e.g. 4-mercaptobenzoic acid). The SERS measurements on bacteria are performed on bulk material using metallic nanoparticles which are accumulated in the outer part of the bacterium walls resulting in an averaging over a lot of bacterial cells. To distinguish and group together bacteria based on their spectral fingerprints, a multivariate data analysis technique should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T.A. Alexander, Development of methodology based on commercialised SERS-active substrates for rapid discrimination of Poxviridae virions. Anal. Chem. 80, 2817 (2008)

    Article  Google Scholar 

  • P. Amrolia, S.G. Sullivan, A. Stern, R. Munday, Toxicity of aromatic thiols in the human red blood-cell. J. Appl. Toxicol. 9, 113 (1989)

    Article  Google Scholar 

  • P.D. Bao, T.Q. Huang, X.M. Liu, T.Q. Wu, Surface-enhanced Raman spectroscopy of insect nuclear polyhedrosis viruses. J. Raman Spectrosc. 32, 227 (2001)

    Article  ADS  Google Scholar 

  • O. Bar-Ilan, R.M. Albrecht, V.E. Fako, D.Y. Furgeson, Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5, 1897 (2009)

    Article  Google Scholar 

  • S.W. Bishnoi, C.J. Rozell, C.S. Levin, M.K. Gheith, B.R. Johnson, D.H. Johnson, N.J. Halas, All-optical nanoscale pH meter. Nano Lett. 6, 1687 (2006)

    Article  ADS  Google Scholar 

  • E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759 (2009)

    Article  Google Scholar 

  • X.W. Cao, C.W. Shi, W.B. Lu, H. Zhao, M. Wang, W. Tong, J. Dong, X.D. Han, W.P. Qian, Synthesis of Au nanostars and their application as surface enhanced Raman scattering-activity tags inside living cells. J. Nanosci. Nanotechnol. 15, 4829 (2015)

    Article  Google Scholar 

  • I.F. Cheng, H.C. Chang, D. Hou, H.C. Chang, An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1, 021503 (2007)

    Article  Google Scholar 

  • I. Chourpa, H. Morjani, J.F. Riou, M. Manfait, Intracellular molecular interactions of antitumor drug amsacrine (m-AMSA) as revealed by surface-enhanced Raman spectroscopy. FEBS Lett. 397, 61 (1996)

    Article  Google Scholar 

  • I. Chourpa, F.H. Lei, P. Dubois, M. Manfait, G.D. Sockalingum, Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem. Soc. Rev. 37, 993 (2008)

    Article  Google Scholar 

  • D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Moller, D. Naumann, V. Deckert, J. Popp, Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. J. Raman Spectrosc. 40, 240 (2009)

    Article  ADS  Google Scholar 

  • D. Drescher, J. Kneipp, Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem. Soc. Rev. 41, 5780 (2012)

    Article  Google Scholar 

  • D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, N. Jakubowski, Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal. Chem. 84, 9684 (2012)

    Article  Google Scholar 

  • S. Efrima, B.V. Bronk, Silver colloids impregnating or coating bacteria. J. Phys. Chem. B 102, 5947 (1998)

    Article  Google Scholar 

  • C. Eliasson, A. Lorén, J. Engelbrektsson, M. Josefson, J. Abrahamsson, K. Abrahamsson, Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation. Spectrochim. Acta A 61, 755 (2005)

    Article  ADS  Google Scholar 

  • S. Feng. Z. Li, G. Chen, D. Lin, S. Huang, Z. Huang, Y. Li, J. Lin, R. Chen, H. Zeng, Ultrasound-mediated method for rapid delivery of nanoparticles into cells for intracellular surface-enhanced Raman spectroscopy and cancer cell screening. Nanotechnology 26, 065101 (2015)

    Google Scholar 

  • R. Gessner, P. Rösch, W. Kiefer, J. Popp, Raman spectroscopy investigation of biological materials by use of etched and silver coated glass fiber tips. Biopolymers 67, 327 (2002)

    Article  Google Scholar 

  • R. Gessner, P. Rösch, R. Petry, M. Schmitt, M.A. Strehle, W. Kiefer, J. Popp, The application of a SERS fiber probe for the investigation of sensitive biological samples. Analyst 129, 1193 (2004a)

    Article  ADS  Google Scholar 

  • R. Gessner, C. Winter, P. Rösch, M. Schmitt, R. Petry, W. Kiefer, N. Lankers, J. Popp, Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy. Chem. Phys. Chem. 5, 1159 (2004b)

    Google Scholar 

  • X.M. Han, H. Wang, X.M. Ou, X.H. Zhang, Silicon nanowire-based surface enhanced Raman spectroscopy endoscope for intracellular pH detection. ACS Appl. Mater. Inter. 5, 5811 (2013)

    Article  Google Scholar 

  • R.M. Jarvis, R. Goodacre, Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal. Chem. 76, 40 (2004)

    Article  Google Scholar 

  • R.M. Jarvis, R. Goodacre, Characterisation and identification of bacteria using SERS. Chem. Soc. Rev. 37, 931 (2008)

    Article  Google Scholar 

  • R.M. Jarvis, A. Brooker, R. Goodacre, Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface. Anal. Chem. 76, 5198 (2004)

    Article  Google Scholar 

  • R.M. Jarvis, A. Brooker, R. Goodacre, Surface-enhanced Raman scattering for the rapid discrimination of bacteria. Faraday Discuss. 132, 281 (2006a)

    Google Scholar 

  • R. Jarvis, S. Clarke, R. Goodacre, Rapid analysis of microbiological systems using SERS, in Surface-enhanced Raman scattering: physics and applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer Berlin Heidelberg 2006b), pp. 397–408 (Top. Appl. Phys.)

    Google Scholar 

  • R.A. Jensen, J. Sherin, S.R. Emory, Single nanoparticle based optical pH probe. Appl. Spectrosc. 61, 832 (2007)

    Article  ADS  Google Scholar 

  • I.T. Jolliffe, Principal Component Analysis (Springer New York, Heidelberg, 1986)

    Book  MATH  Google Scholar 

  • D.C. Kennedy, K.A. Hoop, L.L. Tay, J.P. Pezacki, Development of nanoparticle probes for multiplex SERS imaging of cell surface proteins. Nanoscale 2, 1413 (2010)

    Article  ADS  Google Scholar 

  • J.H. Kim, J.S. Kim, H. Choi, S.M. Lee, B.H. Jun, K.N. Yu, E. Kuk, Y.K. Kim, D.H. Jeong, M.H. Cho, Y.S. Lee, Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal. Chem. 78, 6967 (2006)

    Article  Google Scholar 

  • J. Kneipp, Nanosensors based on SERS for applications in living cells, in Surface-enhanced Raman scattering: physics and applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer Berlin Heidelberg 2006), pp. 335–350 (Top. Appl. Phys.)

    Google Scholar 

  • J. Kneipp, 1-P and 2-P excited SERS as intracellular probe, in Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications, ed. by S. Schlücker (Wiley-WCH, Weinheim, 2011), pp. 285–304

    Google Scholar 

  • J. Kneipp, D. Drescher, SERS in cells: from concepts to practical applications, in Frontiers of surface-enhanced Raman scattering: single nanoparticles and single cells, ed. by Y. Ozaki, K. Kneipp, R. Aroca (John Wiley & Sons, Chichester, 2014), pp. 285–308

    Chapter  Google Scholar 

  • J. Kneipp, H. Kneipp, W.L. Rice, K. Kneipp, Optical tags for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal. Chem. 77, 2381 (2005)

    Article  Google Scholar 

  • J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, K. Kneipp, In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett. 6, 2225 (2006)

    Article  ADS  Google Scholar 

  • J. Kneipp, H. Kneipp, B. Wittig, K. Kneipp, One- and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett. 7, 2819 (2007)

    Article  ADS  Google Scholar 

  • K. Kneipp, A.S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K.E. Shafer-Peltier, J.T. Motz, R.R. Dasari, M.S. Feld, Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc. 56, 150 (2002)

    Article  ADS  Google Scholar 

  • B. Küstner, M. Gellner, M. Schütz, F. Schöppler, A. Marx, P. Ströbel, P. Adam, C. Schmuck, S. Schlücker, SERS labels for red laser excitation: Silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew. Chem. Int. Ed. 48, 1950 (2009)

    Article  Google Scholar 

  • J.F. Li, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), in Frontiers of surface-enhanced Raman scattering: single nanoparticles and single cells, ed. by Y. Ozaki, K. Kneipp, R. Aroca (John Wiley & Sons, Chichester, 2014), pp. 163–192

    Chapter  Google Scholar 

  • J. Lin, R. Chen, S. Feng, Y. Li, Z. Huang, S. Xie, Y. Yu, M. Cheng, H. Zeng, Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 25, 388 (2009)

    Article  Google Scholar 

  • B.F.J. Manly, Multivariate Statistical Met.: A Primer (Chapman & Hall/CRC, New York 1994)

    Google Scholar 

  • A. Matschulat, D. Drescher, J. Kneipp, Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano 4, 3259 (2010)

    Article  Google Scholar 

  • S.P. Mulvaney, M.D. Musick, C.D. Keating, M.J. Natan, Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 19, 4784 (2003)

    Article  Google Scholar 

  • K. Nithipatikom, M.J. McCoy, S.R. Hawi, K. Nakamoto, F. Adar, W.B. Campbell, Characterization and applications of Raman labels for confocal Raman microspectroscopic detection of cellular proteins in single cells. Anal. Biochem. 322, 198 (2003)

    Article  Google Scholar 

  • A.K. Oyelere, P.C. Chen, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chem. 18, 1490 (2007)

    Article  Google Scholar 

  • A. Pallaoro, G.B. Braun, N.O. Reich, M. Moskovits, Mapping local pH in live cells using encapsulated fluorescent SERS nanotags. Small 6, 618 (2010)

    Article  Google Scholar 

  • I.S. Patel, W.R. Premasiri, D.T. Moir, L.D. Ziegler, Barcoding bacterial cells: a SERS-based methodology for pathogen identification. J. Raman Spectrosc. 39, 1660 (2008)

    Article  ADS  Google Scholar 

  • M.D. Porter, J.D. Driskell, K.M. Kwarta, R.J. Lipert, J.D. Neill, J.F. Ridpath, Detection of viruses: atomic force microscopy and surface enhanced Raman spectroscopy, in New diagnostic technology: applications in animal health and biological controls, developments in biological controls, ed. by P. Vannier, D. Espeseth (Basel, Karger Postfach, 2006), pp. 31–39

    Google Scholar 

  • W.E. Premasiri, D.T. Moir, M.S. Klempner, N. Krieger, G. Jones II, L.D. Ziegler, Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J. Phys. Chem. B 109, 312 (2005)

    Article  Google Scholar 

  • W.R. Premasiri, P. Lemler, Y. Chen, Y. Gebregziabher, L.D. Ziegler, SERS analysis of bacteria, human blood, and cancer cells: a metabolomic and diagnostic tool, in Frontiers of surface-enhanced Raman scattering: Single nanoparticles and single cells, ed. by Y. Ozaki, K. Kneipp, R. Aroca (John Wiley & Sons, Chichester, 2014), pp. 257–283

    Chapter  Google Scholar 

  • X. Qian, X.H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83 (2008)

    Article  Google Scholar 

  • J.P. Scaffidi, M.K. Gregas, V. Seewaldt, T. Vo-Dinh, SERS-based plasmonic nanobiosensing in single living cells. Anal. Bioanal. Chem. 393, 1135 (2009)

    Article  Google Scholar 

  • A.M. Schwartzberg, T.Y. Oshiro, J.Z. Zhang, T. Huser, C.E. Talley, Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles. Anal. Chem. 78, 4732 (2006)

    Article  Google Scholar 

  • A. Sengupta, M. Mujacic, E.J. Davis, Detection of bacteria by surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 386, 1379 (2006)

    Article  Google Scholar 

  • A. Shamsaie, M. Jonczyk, J. Sturgis, J.P. Robinson, J. Irudayaraj, Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes. J. Biomed. Opt. 12, 020502 (2007)

    Article  ADS  Google Scholar 

  • S. Shanmukh, L. Jones, Y.P. Zhao, J.D. Driskell, R.A. Tripp, R.A. Dluhy, Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques. Anal. Bioanal. Chem. 390, 1551 (2008)

    Article  Google Scholar 

  • A. Sujith, T. Itoh, H. Abe, K. Yoshida, M.S. Kiran, V. Biju, M. Ishikawa, Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 394, 1803 (2009)

    Article  Google Scholar 

  • C.E. Talley, L. Jusinski, C.W. Hollars, S.M. Lane, T. Huser, Intracellular pH sensors based on surface-enhanced Raman scattering. Anal. Chem. 76, 7064 (2004)

    Article  Google Scholar 

  • X.B. Tan, Z.Y. Wang, J. Yang, C.Y. Song, R.H. Zhang, Y.P. Cui, Polyvinylpyrrolidone-(PVP-)coated silver aggregates for high performance surface-enhanced Raman scattering in living cells. Nanotechnology 20, 445102 (2009)

    Article  ADS  Google Scholar 

  • H.W. Tang, X.B. Yang, J. Kirkham, D.A. Smith, Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering. Anal. Chem. 79, 3646 (2007)

    Article  Google Scholar 

  • E.A. Vitol, Z. Orynbayeva, M.J. Bouchard, J. Azizkhan-Clifford, G. Friedman, Y. Gogotsi, In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. ACS Nano 3, 3529 (2009)

    Article  Google Scholar 

  • M.B. Wabuyele, F. Yan, G.D. Griffin, T. Vo-Dinh, Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells. Rev. Sci. Instrum. 76, 063710 (2005)

    Article  ADS  Google Scholar 

  • Y. Wang, J.L. Seebald, D.P. Szeto, J. Irudayaraj, Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano 4, 4039 (2010)

    Article  Google Scholar 

  • Y. Wang, B. Yan, L. Chen, SERS tags: novel optical nanotags for bioanalysis. Chem. Rev. 113, 1391 (2013)

    Article  Google Scholar 

  • W. Xie, L. Wang, Y.Y. Zhang, L. Su, A.G. Shen, J.Q. Tan, J.M. Hu, Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering. Bioconjugate Chem. 20, 768 (2009)

    Article  Google Scholar 

  • W. Xie, L. Su, A. Shen, A. Materny, J. Hu, Application of surface-enhanced Raman scattering in cell analysis. J. Raman Spectrosc. 42, 1248 (2011)

    Article  ADS  Google Scholar 

  • L. Zeiri, S. Efrima, Surface-enhanced Raman spectroscopy of bacteria: the effect of excitation wavelength and chemical modification of the colloidal milieu. J. Raman Spectrosc. 36, 667 (2005)

    Article  ADS  Google Scholar 

  • H. Zhou, D. Yang, N.P. Ivleva, N.E. Mircescu, S. Schubert, R. Niessner, A. Wieser, C. Haisch, Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering. Anal. Chem. 87, 6553 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Prochazka .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prochazka, M. (2016). SERS Investigations of Cells, Viruses and Microorganisms. In: Surface-Enhanced Raman Spectroscopy. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-23992-7_6

Download citation

Publish with us

Policies and ethics