Biomolecular SERS Applications

  • Marek Prochazka
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


SERS spectroscopy is currently undergoing rapid development as an ultra-sensitive and highly specific analytical technique for biomolecular detection. This chapter gives an overview of SERS study of biomolecules primarily of nucleic acids, proteins, membranes and their components. Both detection schemes—intrinsic and extrinsic—will be introduced. Direct spectral signature of the biomolecule can be obtained by an intrinsic scheme. An extrinsic approach using labelling of target biomolecule or SERS tag consisting of metallic NPs and Raman reporter molecule brings indirect information but much better sensitivity. For example, SERS detection limits for labelled oligonucleotides can be about 10−11–10−12 M, which is about three orders of magnitude better than those provided by standard fluorescence technique. Hybridization of a nucleic acid to its complementary target serves to its unambiguous molecular recognizability. For protein detection, immunoassay platforms are employed to detect the target antigens or antibodies (typically small proteins) through specific antibody-antigen binding. SERS tags formed by metallic nanoparticles with attached Raman reporter molecules (and biorecognition element such as an antibody in the case of immunoassays) are used in SERS extrinsic hybridization and immunoassay experiments, thus increasing their sensitivity.


SERS Spectrum SERS Detection Nicotinic Acid Adenine Dinucleotide Phosphate Immunoassay Platform Crystal Violet Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. J.L. Abell, J.M. Garren, J.D. Driskell, R.A. Tripp, Y. Zhao, Label-free detection of micro-RNA hybridization using surface-enhanced Raman spectroscopy and least-squares analysis. J. Am. Chem. Soc. 134, 12889 (2012)CrossRefGoogle Scholar
  2. R. Aroca, Surface-Enhanced Vibrational Spectroscopy (John Wiley & Sons, Chichester, 2006)CrossRefGoogle Scholar
  3. E. Bailo, V. Deckert, Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew. Chem. Int. Ed. 47, 1658 (2008)CrossRefGoogle Scholar
  4. K.C. Bantz, A.F. Meyer, N.J. Wittenberg, H. Im, O. Kurtulus, S.H. Lee, N.C. Lindquist, S.H. Oh, C.L. Haynes, Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 13, 11551 (2011)CrossRefGoogle Scholar
  5. A. Barhoumi, N.J. Halas, Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy. J. Am. Chem. Soc. 132, 12792 (2010)CrossRefGoogle Scholar
  6. A. Barhoumi, D. Zhang, F. Tam, N.J. Halas, Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 130, 5523 (2008)CrossRefGoogle Scholar
  7. S.E.J. Bell, N.M.S. Sirimuthu, Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 128, 15580 (2006)CrossRefGoogle Scholar
  8. A.R. Bizzarri, S. Cannistraro, Surface-enhanced resonance Raman spectroscopy signals from single myoglobin molecules. Appl. Spectrosc. 56, 1531 (2002)ADSCrossRefGoogle Scholar
  9. Y.C. Cao, R. Jin, C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536 (2002)ADSCrossRefGoogle Scholar
  10. Y.C. Cao, R. Jin, J.M. Nam, C.S. Thaxton, C.A. Mirkin, Raman dye-labeled nanoparticle probes for proteins. J. Am. Chem. Soc. 125, 14676 (2003)CrossRefGoogle Scholar
  11. S. Caporali, V. Moggi-Cecchi, M. Muniz-Miranda, M. Pagliali, G. Pratesi, V. Schettino, SERS investigation of possible extraterrestrial life traces: experimental adsorption of adenine on a Martian meteorite. Meteorit. Planet. Sci. 47, 853 (2012)ADSCrossRefGoogle Scholar
  12. Z. Chen, S.M. Tabakman, A.P. Goodwin, M.G. Kattah, D. Daranciang, X.R. Wang, G.Y. Zhang, X.L. Li, Z. Liu, P.J. Utz, K.L. Jiang, S.S. Fan, H.J. Dai, Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 26, 1285 (2008)CrossRefGoogle Scholar
  13. H. Chon, S. Lee, S.W. Son, C.H. Oh, J. Choo, Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hallow gold nanospheres. Anal. Chem. 81, 3029 (2009)Google Scholar
  14. G.D. Chumanov, T.M. Cotton, Surface-enhanced Raman scattering for discovering and scoring single-base differences in DNA. Proc. SPIE Biomed. Appl. Raman Spectrosc. 3608, 204 (1999)ADSCrossRefGoogle Scholar
  15. R.A. Copeland, S.P.A. Fodor, T.G. Spiro, Surface-enhanced Raman spectra of an active flavo enzyme: glucose oxidase and riboflavin binding protein on silver particles. J. Am. Chem. Soc. 106, 3872 (1984)CrossRefGoogle Scholar
  16. T.M. Cotton, The applications of SERS to biological systems, in Spectroscopy of Surfaces, ed. by R.J.H. Clark, R.E. Hester (Wiley & Sons, Chichester, 1988), pp. 90–153Google Scholar
  17. T.M. Cotton, S.G. Schultz, R.P. Van Duyne, Surface-enhanced resonance Raman scattering from cytochrome c and myoglobin adsorbed on a silver electrode. J. Am. Chem. Soc. 102, 7960 (1980)CrossRefGoogle Scholar
  18. T.M. Cotton, J.-H. Kim, G.D. Chumanov, Application of surface-enhanced Raman spectroscopy to biological systems. J. Raman Spectrosc. 22, 729 (1991)ADSCrossRefGoogle Scholar
  19. Y. Cui, B. Ren, J. Yao, R. Gu, Z.Q. Tian, Multianalyte immunoassay based on surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 38, 896 (2007)ADSCrossRefGoogle Scholar
  20. R. Das, R. Jagannathan, C. Sharan, U. Kumar, P. Poddar, Mechanistic study of surface functionalization of enzyme lysozyme synthesized Ag and Au nanoparticles using surface enhanced Raman spectroscopy. J. Phys. Chem. C 113, 21493 (2009)CrossRefGoogle Scholar
  21. I. Delfino, A.R. Bizzarri, S. Cannistraro, Single-molecule detection of yeast cytrochrome c by surface-enhanced Raman spectroscopy. Biophys. Chem. 113, 41 (2005)CrossRefGoogle Scholar
  22. F.T. Docherty, P.B. Monaghan, R. Keir, D. Graham, W.E. Smith, J.M. Cooper, The first SERRS multiplexing from labelled oligonucleotides in a microfluidics lab-on-a-chip. Chem. Commun. 1, 118 (2004)CrossRefGoogle Scholar
  23. X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi, Y. Ozaki, NIR SERS detection of immune reaction on gold colloid particles without bound/free antigen separation. J. Raman Spectrosc. 29, 739 (1998)ADSCrossRefGoogle Scholar
  24. P. Douglas, K.M. McCarney, D. Graham, W.E. Smith, Protein–nanoparticle labelling probed by surface enhanced resonance Raman spectroscopy. Analyst 132, 865 (2007)ADSCrossRefGoogle Scholar
  25. V.P. Drachev, V.M. Shalaev, Biomolecule sensing with adaptive plasmonic nanostructures, in Surface-Enhanced Raman Scattering: Physics and Applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer-Verlag, Berlin Heidelberg 2006), pp. 351–366 (Top. Appl. Phys.)CrossRefGoogle Scholar
  26. V.P. Drachev, M.D. Thoreson, E.N. Khaliullin, V.J. Davisson, V.M. Shalaev, Surface-enhanced Raman difference between human insulin and insulin lispro detected with adoptive nanostructures. J. Phys. Chem. B 108, 18046 (2004)CrossRefGoogle Scholar
  27. J.D. Driskell, J.M. Uhlenkamp, R.J. Lipert, M.D. Porter, Surface-enhanced Raman scattering immunoassays using a rotated capture substrate. Anal. Chem. 79, 4141 (2007)CrossRefGoogle Scholar
  28. J.D. Driskell, A.G. Seto, L.P. Jones, S. Jokela, R.A. Dluhy, Y.P. Zhao, R.A. Tripp, Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens. Bioelectron. 24, 917 (2008)CrossRefGoogle Scholar
  29. K. Faulds, Multiplexed SERS for DNA detection, in Raman Spectroscopy for Nanomaterials Characterization, ed. by C.S.S.R. Kumar (Springer, Berlin Heidelberg, 2012), pp. 353–378CrossRefGoogle Scholar
  30. K. Faulds, W.E. Smith, D. Graham, Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal. Chem. 76, 412 (2004)CrossRefGoogle Scholar
  31. K. Faulds, R. Jarvis, W.E. Smith, D. Graham, R. Goodacre, Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst 133, 1505 (2008)ADSCrossRefGoogle Scholar
  32. C. Garrido, T. Aguayo, E. Clavijo, J.S. Gómez-Jeria, M.M. Campos-Vallette, The effect of the pH on the interaction of L-arginine with colloidal silver nanoparticles. A Raman and SERS study. J. Raman Spectrosc. 44, 1105 (2013)ADSCrossRefGoogle Scholar
  33. J.L. Gong, Y. Liang, Y. Huang, J.W. Chen, J.H. Jiang, G.L. Shen, R.Q. Yu, Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosens. Bioelectron. 22, 1501 (2007)CrossRefGoogle Scholar
  34. D. Graham, K. Faulds, Quantitative SERRS for DNA sequence analysis. Chem. Soc. Rev. 37, 1042 (2008)CrossRefGoogle Scholar
  35. D. Graham, W.E. Smith, A.M.T. Linacre, C.H. Munro, N.D. Watson, P.C. White, Selective detection of deoxyribonucleic acid at ultralow concentrations by SERRS. Anal. Chem. 69, 4703 (1997)CrossRefGoogle Scholar
  36. D. Graham, D.G. Thompson, W.E. Smith, K. Faulds, Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat. Nanotechnol. 3, 548 (2008)ADSCrossRefGoogle Scholar
  37. L. Grajcar, V. Huteao, T. Huynh-Dinh, M.-H. Baron, A SERS probe for adenyl residues available for intermolecular interactions. Part II—Reactive adenyl sites in highly diluted DNA. J. Raman Spectrosc. 32, 1037 (2001)ADSCrossRefGoogle Scholar
  38. L. Grajcar, C. El Amri, M. Ghomi, S. Fermandjian, V. Huteau, R. Mandel, S. Lecomte, M.H. Baron, Assessment of adenyl residue reactivity within model nucleic acids by surface enhanced Raman spectroscopy. Biopolymers 82, 6 (2006)CrossRefGoogle Scholar
  39. D.S. Grubisha, R.J. Lipert, H.Y. Park, J. Driskell, M.D. Porter, Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem. 75, 5936 (2003)CrossRefGoogle Scholar
  40. X. Gu, Y.R. Yan, G. Jinag, J. Adkins, J. Shi, G. Jianh, S. Tian, Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection. Anal. Bioanal. Chem. 406, 1885 (2014)CrossRefGoogle Scholar
  41. L. Guerrini, Z. Krpetic, D. van Lierop, R.A. Alvarez-Puebla, D. Graham, Direct surface-enhanced Raman scattering analysis of DNA duplexes. Angew. Chem. Int. Ed. 54, 1144 (2015)CrossRefGoogle Scholar
  42. S. Habuchi, M. Cotlet, R. Gronheid, G. Dirix, J. Michiels, J. Vanderleyden, F.C.D. Schryver, J. Hofkens, Single-molecule surface enhanced resonance Raman spectroscopy of the enhanced green fluorescent protein. J. Am. Chem. Soc. 125, 8446 (2003)CrossRefGoogle Scholar
  43. X.X. Han, B. Zhao, Y. Ozaki, Surface-enhanced Raman scattering for protein detection. Anal. Bioanal. Chem. 394, 1719 (2009a)CrossRefGoogle Scholar
  44. X.X. Han, Y. Kitahama, T. Itoh, C.X. Wang, B. Zhao, Y. Ozaki, Protein-mediated sandwich strategy for surface-enhanced Raman scattering: application to versatile protein detection. Anal. Chem. 81, 3350 (2009b)CrossRefGoogle Scholar
  45. X.X. Han, B. Huang, B. Zhao, Y. Ozaki, Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering. Anal. Chem. 81, 3329 (2009c)CrossRefGoogle Scholar
  46. X.X. Han, Y. Xie, B. Zhao, Y. Ozaki, Highly sensitive protein concentration assay over a wide range via surface-enhanced Raman scattering of coomassie brilliant blue. Anal. Chem. 82, 4325 (2010)CrossRefGoogle Scholar
  47. C. Heywang, M. Saint-Pierre Chazalet, M. Masson, A. Garnier-Suillerot, J. Bolard, Incorporation of exogeneous molecules inside mono- and bilayers of phospholipids: influence of the mode of preparation revealed by SERRS and surface pressure studies. Langmuir 12, 6459 (1996)Google Scholar
  48. P. Hildebrandt, J.J. Feng, A. Kranich, K.H. Ly, D.F. Martín, M. Martí, D.H. Murgida, D.A. Paggi, N. Wisitruangsakul, M. Sezer, I.M. Weidinger, I. Zebger, Electron transfer of proteins at membrane models, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley-WCH, Weinheim, 2011), pp. 219–240Google Scholar
  49. R.E. Holt, T.M. Cotton, Surface-enhanced resonance Raman and electrochemical investigation of glucose-oxidase catalysis at a silver electrode. J. Am. Chem. Soc. 111, 2815 (1989)CrossRefGoogle Scholar
  50. J. Hu, P.C. Zheng, J.H. Jiang, G.L. Shen, R.Q. Yu, G.K. Liu, Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy. Anal. Chem. 81, 87 (2009)CrossRefGoogle Scholar
  51. H. Hwang, H. Chon, J. Choo, J.K. Park, Optoelectrofluidic sandwich immunoassays for detection of human tumor marker using surface-enhanced Raman scattering. Anal. Chem. 82, 7603 (2010)CrossRefGoogle Scholar
  52. M. Iosin, F. Toderas, P.L. Baldeck, S. Astilean, Study of protein-gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J. Mol. Struct. 924–26, 196 (2009)CrossRefGoogle Scholar
  53. N.R. Isola, D.L. Stokes, T. Vo-Dinh, Surface enhanced Raman gene probe for HIV detection. Anal. Chem. 70, 1352 (1998)CrossRefGoogle Scholar
  54. A. Kandakkathara, I. Utkin, R. Fedosejevs, Surface-enhanced Raman scattering (SERS) detection of low concentrations of trypthophan amino acid in silver colloid. Appl. Spectrosc. 65, 507 (2011)ADSCrossRefGoogle Scholar
  55. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)ADSCrossRefGoogle Scholar
  56. E. Koglin, J.-M. Séquaris, Surface enhanced Raman scattering of biomolecules. Top. Curr. Chem. 134, 1 (1986)CrossRefGoogle Scholar
  57. P. Krysinski, A. Zebrowska, A. Michota, J. Bukowska, L. Becucci, M. Moncelli, Tethered mono- and bilayer lipid membranes on Au and Hg. Langmuir 17, 3852 (2001)CrossRefGoogle Scholar
  58. J. Kundu, O. Neumann, B.G. Janesko, D. Zhang, S. Lal, A. Barhoumi, G.E. Scuseria, N.J. Halas, Adenine- and adenosine monophosphate (AMP)-gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies. J. Phys. Chem. C 113, 14390 (2009a)CrossRefGoogle Scholar
  59. J. Kundu, C.S. Levin, N.J. Halas, Real-time monitoring of lipid transfer between vesicles and hybrid bilayers on Au nanoshells using surface-enhanced Raman scattering (SERS). Nanoscale 1, 114 (2009b)ADSCrossRefGoogle Scholar
  60. G. Lajos, D. Jancura, D.P. Miskovsky, J.V. Garcia-Ramos, S. Sanchez-Cortes, Interaction of the photosensitizer hypericin with low-density lipoproteins and phosphatidylcholine: a surface-enhanced Raman scattering and surface-enhanced fluorescence study. J. Phys. Chem. C 113, 7147 (2009)CrossRefGoogle Scholar
  61. I.A. Larmour, K. Faulds, D. Graham, The past, present and future of enzyme measurements using surface enhanced Raman spectroscopy. Chem. Sci. 1, 151 (2010)CrossRefGoogle Scholar
  62. C.S. Levin, J. Kundu, B.G. Janesko, G.E. Scuseria, R.M. Raphael, N.J. Halas, Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies. J. Phys. Chem. B 112, 14168 (2008)CrossRefGoogle Scholar
  63. E. Lipiec, R. Sekine, J. Bielecki, W.M. Kwiatek, B.R. Wood, Molecular characterization of DNA double strand breaks with tip-enhanced Raman scattering. Angew. Chem. Int. Ed. 53, 169 (2014)CrossRefGoogle Scholar
  64. X.L. Liu, S.G. Huan, Y. Bu, G. Shen, R. Yu, Liposome-mediated enhancement of the sensitivity in immunoassay based on surface-enhanced Raman scattering at gold nanosphere array substrate. Talanta 75, 797 (2008)CrossRefGoogle Scholar
  65. I.D.G. Macdonald, W.E. Smith, Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12, 706 (1996)CrossRefGoogle Scholar
  66. N.E. Marotta, K.R. Beavers, L.A. Bottomley, Limitations of surface enhanced Raman scattering in sensing DNA hybridization demonstrated by label-free DNA oligos as molecular rulers of distance-dependent enhancement. Anal. Chem. 85, 1440 (2013)CrossRefGoogle Scholar
  67. C.D. McGuinness, A.M. Macmillan, J. Karolin, W.E. Smith, D. Graham, D.J.C. Pickup, D.J.S. Birch, Single molecule level detection of allophycocyanin by surface enhanced resonance Raman scattering. Analyst 132, 633 (2007)ADSCrossRefGoogle Scholar
  68. D.H. Murgida, P. Hildebrandt, Surface-enhanced vibrational spectroelectrochemistry: electric-field effects on redox and redox-coupled processes of heme proteins, in Surface-enhanced Raman scattering: physics and applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer-Verlag, Berlin Heidelberg 2006), pp. 313–334 (Top. Appl. Phys.)CrossRefGoogle Scholar
  69. D.H. Murgida, P. Hildebrandt, Disentangling interfacial redox processes of proteins by SERR spectroscopy. Chem. Soc. Rev. 37, 937 (2008)CrossRefGoogle Scholar
  70. R. Narayanan, R.J. Lipert, M.D. Porter, Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays. Anal. Chem. 80, 2265 (2008)CrossRefGoogle Scholar
  71. J. Ni, R.J. Lipert, G.B. Dawson, M.D. Porter, Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal. Chem. 71, 4903 (1999)CrossRefGoogle Scholar
  72. E. Papadopoulou, S.E.J. Bell, DNA reorientation on Au nanoparticles: label-free detection of hybridization by surface enhanced Raman spectroscopy. Chem. Commun. 47, 10966 (2011a)CrossRefGoogle Scholar
  73. E. Papadopoulou, S.E.J. Bell, Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 50, 9058 (2011b)CrossRefGoogle Scholar
  74. E. Papadopoulou, S.E.J. Bell, Label-free detection of nanomolar unmodified single- and double-stranded DNA by using surface-enhanced Raman spectroscopy on Ag and Au colloids. Chem. Eur. J. 18, 5394 (2012)CrossRefGoogle Scholar
  75. I. Pavel, E. McCarney, A. Elkhaled, A. Morrill, K. Plaxco, M. Moskovits, Label-free SERS detection of small proteins modified to act as bifunctional linkers. J. Phys. Chem. C 112, 4880 (2008)CrossRefGoogle Scholar
  76. N. Pazos-Perez, R.A. Álvarez-Puebla, SERS-encoded particles, in Raman spectroscopy for nanomaterials characterization, ed. by C.S.S.R. Kumar (Springer, Berlin Heidelberg, 2012), pp. 33–50CrossRefGoogle Scholar
  77. M.A. Penn, D.M. Drake, J.D. Driskell, Accelerated surface-enhanced Raman spectroscopy (SERS)-based immunoassay on a gold-plated membrane. Anal. Chem. 85, 8609 (2013)CrossRefGoogle Scholar
  78. R. Picorel, R.E. Holt, R. Heald, T.M. Cotton, M. Seibert, Stability of isolated bacterial and photosystem-II reaction center complexes on Ag electrode surfaces—a surface-enhanced resonance Raman study. J. Am. Chem. Soc. 113, 2839 (1991)CrossRefGoogle Scholar
  79. E. Podstawka, Y. Ozaki, L.M. Proniewicz, Surface-enhanced Raman spectroscopy investigation of amino acids and their homodipeptides adsorbed on colloidal silver. Appl. Spectrosc. 58, 570 (2004a)ADSCrossRefGoogle Scholar
  80. E. Podstawka, Y. Ozaki, L.M. Proniewicz, Adsorption of S-S containing proteins on a colloidal surface studied by surface-enhanced Raman spectroscopy. Appl. Spectrosc. 58, 1147 (2004b)ADSCrossRefGoogle Scholar
  81. M.D. Porter, R.L. Lipert, L.M. Siperko, G. Wang, R. Narayanan, SERS as a bioassay platform: fundamentals, design, and applications. Chem. Soc. Rev. 37, 1001 (2008)CrossRefGoogle Scholar
  82. E. Prado, N. Daugey, S. Plumet, L. Servant, S. Lecomte, Quantitative label-free RNA detection using surface-enhanced Raman spectroscopy. Chem. Commun. 47, 7425 (2011)CrossRefGoogle Scholar
  83. L. Rodríguez-Lorenzo, R. de la Rica, R.A. Alvarez-Puebla, L.M. Liz-Marzán, M.M. Stevens, Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nature Mat. 11, 604 (2012)ADSCrossRefGoogle Scholar
  84. T.E. Rohr, T. Cotton, N. Fan, P.J. Tarcha, Immunoassay employing surface-enhanced Raman spectroscopy. Anal. Biochem. 182, 388 (1989)CrossRefGoogle Scholar
  85. G. Rusciano, A.C. De Luca, G. Pesce, A. Sasso, G. Oliviero, J. Amato, N. Borbone, S. D’Errico, V. Piccialli, G. Piccialli, L. Mayol, Label-free probing of G-quadruplex formation by surface-enhanced Raman scattering. Anal. Chem. 83, 6849 (2011)CrossRefGoogle Scholar
  86. S. Schlücker, SERS microscopy: nanoparticle probes and biomedical applications, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley-WCH, Weinheim, 2011), pp. 263–284Google Scholar
  87. S. Schlücker, Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756 (2014)CrossRefGoogle Scholar
  88. P. Šimáková, M. Procházka, E. Kočišová, SERS Microspectroscopy of biomolecules on dried Ag colloidal drops. Spectrosc. Int. J. 27, 449 (2012)Google Scholar
  89. P. Šimáková, M. Procházka, E. Kočišová, Sensitive Raman spectroscopy of lipids based on drop deposition using DCDR and SERS. J. Raman Spectrosc. 44, 1479 (2013)CrossRefGoogle Scholar
  90. W.E. Smith, Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev. 37, 955 (2008)CrossRefGoogle Scholar
  91. G. Smulevich, T.G. Spiro, Surface enhanced Raman-spectroscopic evidence that adsorption on silver particles can denature heme-proteins. J. Phys. Chem. 89, 5168 (1985)CrossRefGoogle Scholar
  92. R. Stevenson, K. Faulds, D. Graham, Quantitative DNA analysis using surface-enhanced resonance Raman scattering, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley-WCH, Weinheim, 2011), pp. 241–262Google Scholar
  93. R. Treffer, R. Böhme, T. Deckert-Gaudig, K. Lau, S. Tiede, X. Lin, V. Deckert, Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. Biochem. Soc. Trans. 40, 609 (2012)CrossRefGoogle Scholar
  94. E.A. Vitol, E. Brailoiu, Z. Orynbayeva, N.J. Dun, G. Friedman, Y. Gogotsi, Surface-enhanced Raman spectroscopy as a tool for detecting Ca2+ mobilizing second messengers in cell extracts. Anal. Chem. 82, 6770 (2010)CrossRefGoogle Scholar
  95. T. Vo-Dinh, D.L. Stokes, G.D. Griffin, M. Volkan, U.J. Kim, M.I. Simon, Surface-enhanced Raman scattering (SERS) method and instrumentation for genomics and biomedical analysis. J. Raman Spectrosc. 30, 785 (1999)ADSCrossRefGoogle Scholar
  96. T. Vo-Dinh, F. Yan, M.B. Wabuyele, Surface-enhanced Raman scattering for medical diagnostics and molecular imaging, in Surface-Enhanced Raman Scattering: Physics and Applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer-Verlag, Berlin Heidelberg 2006), pp. 409–426 (Top. Appl. Phys.)CrossRefGoogle Scholar
  97. Y. Wang, H. Wei, B. Li, W. Ren, S. Guo, S. Dong, E. Wang, SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem. Commun. 48, 5220 (2007)CrossRefGoogle Scholar
  98. G. Wang, H. Park, R. Lipert, M.D. Porter, Mixed monolayers on gold nanoparticle labels for multiplexed surface-enhanced Raman scattering based immunoassays. Anal. Chem. 81, 9643 (2009)CrossRefGoogle Scholar
  99. G.F. Wang, R.J. Lipert, M. Jain, S. Kaur, S. Chakraboty, M.P. Torres, S.K. Batra, R.E. Brand, M.D. Porter, Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. Anal. Chem. 83, 2554 (2011)CrossRefGoogle Scholar
  100. Y. Wang, B. Yan, L. Chen, SERS tags: novel optical nanotags for bioanalysis. Chem. Rev. 113, 1391 (2013)CrossRefGoogle Scholar
  101. Y. Wang, R. Vaidyanathan, M.J.A. Shiddiky, M. Trau, Enabling rapid and specific surface-enhanced Raman scattering immunoassay using nanoscaled surface shear forces. ACS Nano 9, 6354 (2015)CrossRefGoogle Scholar
  102. F. Wei, D. Zhang, N.J. Halas, J.D. Hartgerink, Aromatic amino acids providing characteristics motifs in the Raman and SERS spectroscopy of peptides. J. Phys. Chem. B 112, 9158 (2008)CrossRefGoogle Scholar
  103. H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357 (1999)ADSCrossRefGoogle Scholar
  104. L.J. Xu, C. Zong, X.S. Zheng, P. Hu, J.M. Feng, B. Ren, Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal. Chem. 86, 2238 (2014)CrossRefGoogle Scholar
  105. N.R. Yaffe, E.W. Blanch, Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids. Vib. Spectrosc. 48, 196 (2008)CrossRefGoogle Scholar
  106. D. Zhang, K.F. Domke, B. Pettinger, Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au(III). Chem. Phys. Chem. 11, 1662 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of PhysicsCharles University in PraguePrague 2Czech Republic

Personalised recommendations