Skip to main content

Bioanalytical SERS Applications

  • Chapter
  • First Online:
Book cover Surface-Enhanced Raman Spectroscopy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

SERS spectroscopy can be applied for the detection of biologically relevant molecules in real complex matrix (e.g. human body fluids, drinks, food). The quantitative SERS measurements are, in practice, the result of considerable effort in optimizing an enhancing substrate and experimental conditions. This chapter will explain the basic principles of quantitative bioanalytical SERS measurements from the point of view of SERS-active substrates, internal intensity standards, sensitivity (limit of detection) and specificity. The successful SERS sensing of analytes with very low affinity for SERS-enhancing surface is possible due to suitable chemical modification of a metal surface to promote the capture of particular analytes. The results of some SERS bioanalytical applications on pharmaceuticals, drugs (including nicotine and cocaine), pollutants and pesticides, food contaminants and food additives (melamine, food colourants) and biowarfare agents (anthrax) will be summarized. The limits of detection as well as accuracy of SERS analysis are comparable and in some cases even better than these provided by standard analytic techniques (such as HPLC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P.H.B. Aoki, L.N. Furini, P. Alessio, A.E. Aliaga, C.J.L. Constantino, Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs. Rev. Anal. Chem. 32, 55 (2013)

    Article  Google Scholar 

  • M. Baia, S. Astilean, T. Iliescu, Raman and SERS Investigations of Pharmaceuticals (Springer, Berlin, 2008)

    Book  Google Scholar 

  • S.E.J. Bell, N.M.S. Sirimuthu, Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls). Analyst 129, 1032 (2004)

    Article  ADS  Google Scholar 

  • S.E.J. Bell, N.M.S. Sirimuthu, Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 1012 (2008)

    Article  Google Scholar 

  • S.E.J. Bell, A. Stewart, Quantitative SERS methods, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley, Weinheim, 2011), pp. 71–86

    Google Scholar 

  • J.F. Betz, Y. Cheng, G.W. Rubloff, Direct SERS detection of contaminants in a complex mixture: rapid, single step screening for melamine in liquid infant formula. Analyst 137, 826 (2012)

    Article  ADS  Google Scholar 

  • R.J.C. Brown, M.J.T. Milton, Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J. Raman Spectrosc. 39, 1313 (2008)

    Article  ADS  Google Scholar 

  • C. Carrillo-Carrión, B.M. Simonet, M. Valcárcel, B. Lendl, Determination of pesticides by capillary chromatography and SERS detection using a novel silver-quantum dots “sponge” nanocomposite. J. Chromatogr. A 1225, 55 (2012)

    Article  Google Scholar 

  • H.W. Cheng, S.Y. Huan, H.L. Wu, G.L. Shen, R.Q. Yu, Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates. Anal. Chem. 81, 9902 (2009)

    Article  Google Scholar 

  • W. Cheung, I.T. Shadi, Y. Xu, R. Goodacre, Quantitative analysis of the banned food dye Sudan-1 using surface enhanced Raman scattering with multivariate chemometrics. J. Phys. Chem. C 114, 7285 (2010)

    Article  Google Scholar 

  • S. Cinta Pinzaru, I.E. Pavel, in Surface Enhanced Raman Spectroscopy, ed. by S. Schlücker. SERS and Pharmaceuticals (Wiley, Weinheim, 2011), pp. 129–154

    Google Scholar 

  • S. Cinta Pinzaru, I. Pavel, N. Leopold, W. Kiefer, Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering. J. Raman Spectrosc. 35, 338 (2004)

    Article  ADS  Google Scholar 

  • S. Cinta Pinzaru, N. Peica, B. Küstner, S. Schlücker, M. Schmitt, T. Frosch, J.H. Faber, G. Bringmann, J. Popp, FT-Raman and NIR-SERS characterization of the antimalarial drugs chloroquine and mefloquine and their interaction with hematin. J. Raman Spectrosc. 37, 326 (2006)

    Article  ADS  Google Scholar 

  • A.P. Craig, A.A. Franca, J. Irudayaraj, Surface-enhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol. 4, 369 (2013)

    Article  Google Scholar 

  • R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  • Y. Deng, M.N. Idso, D.D. Galvan, Q.M. Yu, Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection. Anal. Chim. Acta 863, 41 (2015)

    Article  Google Scholar 

  • R.L. Dong, S.Z. Weng, L.B. Yang, J.H. Liu, Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines. Anal. Chem. 87, 2937 (2015)

    Article  Google Scholar 

  • H. Fang, X. Zhang, S.J. Zhang, L. Liu, Y.M. Zhao, H.J. Xu, Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy. Sens. Actuators B 213, 452 (2015)

    Article  Google Scholar 

  • S. Farquharson, C. Shende, F.E. Inscore, P. Maksymiuk, A. Gift, Analysis of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 36, 208 (2005)

    Google Scholar 

  • K. Faulds, W.E. Smith, D. Graham, R.J. Lacey, Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS). Analyst 127, 282 (2002)

    Article  ADS  Google Scholar 

  • R. Gao, N. Choi, S.I. Chang, S.H. Kang, J.M. Song, S.I. Cho, D.W. Lim, J. Choo, Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Anal. Chim. Acta 681, 87 (2010)

    Article  Google Scholar 

  • A. Gift, C. Shende, F.E. Inscore, P. Maksymiuk, S. Farquharson, Five-minute analysis of chemotherapy drugs and metabolites in saliva: evaluation dosage. Proc. SPIE 5261, 135 (2004)

    Article  ADS  Google Scholar 

  • A.M. Giovannozzi, F. Rolle, M. Sega, M.C. Abete, D. Marchis, A.M. Rossi, Rapid and sensitive detection of melamine in milk with gold nanoparticles by surface enhanced Raman scattering. Food Chem. 159, 250 (2014)

    Article  Google Scholar 

  • L. Guerrini, J.V. Garcia-Ramos, C. Domingo, S. Sanchez-Cortes, Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced Raman scattering. Anal. Chem. 81, 953 (2009)

    Article  Google Scholar 

  • L. Guerrini, P. Leyton, M. Campos-Vallette, C. Domingo, J.V. Garcia-Ramos, S. Sanchez-Cortes, Detection of persistent organic pollutants by using SERS sensors based on organically functionalized Ag nanoparticles, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley, Weinheim, 2011), pp. 103–128

    Google Scholar 

  • Z. Guo, Z.Y. Cheng, R. Li, L. Chen, H.M. Lv, B. Zhao, J. Choo, One-step detection of melamine in milk by hollow gold chip based on surface-enhanced Raman scattering. Talanta 122, 80 (2014)

    Article  Google Scholar 

  • C.L. Haynes, C.R. Yonzon, X. Zhang, R.P. Van Duyne, Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agents and glucose detection. J. Raman Spectrosc. 36, 471 (2005)

    Article  ADS  Google Scholar 

  • T. Henkel, A. März, J. Popp, SERS and Microfluidics, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley, Weinheim, 2011), pp. 173–190

    Google Scholar 

  • A.J. Hobro, B. Lendl, SERS and separation science, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley, Weinheim, 2011), pp. 155–171

    Google Scholar 

  • Y.X. Hu, S.L. Feng, F. Gao, E.C.Y. Li-Chan, E. Grant, X.N. Lu, Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chem. 176, 123 (2015)

    Article  Google Scholar 

  • F. Inscore, C. Shende, A. Sengupta, H. Huang, S. Farquharson, Detection of drugs of abuse in saliva by surface-enhanced Raman spectroscopy (SERS). Appl. Spectrosc. 65, 1004 (2011)

    Article  ADS  Google Scholar 

  • I. Izquierdo-Lorenzo, S. Sanchez-Cortes, J.V. Garcia-Ramos, Adsorption of beta-adrenergic agonists used in sport doping on metal nanoparticles: a detection study based on surface-enhanced Raman scattering. Langmuir 26, 14663 (2010)

    Article  Google Scholar 

  • M. Jahn, S. Patze, T. Bocklitz, K. Weber, D. Cialla-May, J. Popp, Towards SERS based applications in food analytics: Lipophilic sensor layers for the detection of Sudan III in food matrices. Anal. Chim. Acta 860, 43 (2015)

    Article  Google Scholar 

  • E. Kämmer, K. Olschewski, T. Bocklitz, P. Rösch, K. Weber, D. Cialla-May, J. Popp, A new calibration concept for a reproducible quantitative detection based on SERS measurements in a microfluidic device demonstrated on the model analyte adenine. Phys. Chem. Chem. Phys. 16, 9056 (2014)

    Article  Google Scholar 

  • A. Kim, S.J. Barcelo, R.S. Williams, Z. Li, Melamine sensing in milk products by using surface enhanced Raman scattering. Anal. Chem. 84, 9303 (2012)

    Google Scholar 

  • M.P. Konrad, A.P. Doherty, S.E.J. Bell, Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal. Chem. 85, 6783 (2013)

    Article  Google Scholar 

  • J. Kubackova, G. Fabriciova, P. Miskovsky, D. Jancura, S. Sanchez-Cortes, Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by Alkyl Dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Anal. Chem. 87, 663 (2015)

    Article  Google Scholar 

  • D. Kurouski, R.P. Van Duyne, In Situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Anal. Chem. 87, 2901 (2015)

    Article  Google Scholar 

  • S. Lee, J. Choi, L. Chen, B. Park, J.B. Kyong, G.H. Seong, J. Choo, Y. Lee, K.H. Shin, E.K. Lee, S.W. Joo, K.H. Lee, Anal. Chim. Acta 590, 139 (2007)

    Article  Google Scholar 

  • M. Li, in Applications of Vibrational Spectroscopy in Food Science ed. by E. Li-Chan, P.R. Griffiths, J.M. Chalmers. The applications of surface-enhanced Raman spectroscopy to identify and quantify chemical adulterants or contaminants in food (Wiley, Chichester, 2010), pp. 649–662

    Google Scholar 

  • J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392 (2010a)

    Article  ADS  Google Scholar 

  • X. Li, G. Chen, L. Yang, Z. Jin, J. Liu, Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 20, 2815 (2010b)

    Article  Google Scholar 

  • D.W. Li, W.L. Zhai, Y.T. Li, Y.T. Long, Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim. Acta 181, 23 (2014)

    Article  Google Scholar 

  • M. Lin, L. He, J. Awika, L. Yang, D.R. Ledoux, H. Li, A. Mustapha, Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. J. Food Sci. 73, T129 (2008)

    Article  Google Scholar 

  • X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, Z.Q. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues. Anal. Bional. Chem. 394, 1729 (2009)

    Article  Google Scholar 

  • X. Lin, W.L.J. Hasi, X.T. Lou, S. Lin, F. Yang, B.S. Jia, D.Y. Lin, Z.W. Lu, Droplet detection: simplification and optimization of detecting conditions towards high sensitivity quantitative determination of melamine in milk without any pretreatment. RSC Adv. 4, 51315 (2014)

    Article  Google Scholar 

  • B.H. Liu, G.M. Han, Z.P. Zhang, R.Y. Liu, C.L. Jiang, S.H. Wang, M.Y. Han, Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal. Chem. 84, 255 (2012)

    Article  Google Scholar 

  • B. Liu, P. Zhou, X. Liu, X. Sun, H. Li, M.S. Lin, Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess. Technol. 6, 710 (2013)

    Article  Google Scholar 

  • A. Loren, J. Engelbrektsson, C. Eliasson, M. Josefson, J. Abrahamsson, M. Johansson, K. Abrahamsson, Internal standard in surface-enhanced Raman spectroscopy. Anal. Chem. 76, 7391 (2004)

    Article  Google Scholar 

  • M.B. Mamián-López, R.J. Poppi, Standard addition method applied to the urinary quantification of nicotine in the presence of cotinine and anabasine using surface enhanced Raman spectroscopy and multivariate curve resolution. Anal. Chim. Acta 760, 53 (2013)

    Article  Google Scholar 

  • A. März, K.R. Ackermann, D. Malsch, T. Bocklitz, T. Henkel, J. Popp, Towards a quantitative SERS approach - online monitoring of analytes in a microfluidic system with isotope-edited internal standards. J. Biophotonics 2, 232 (2009)

    Article  Google Scholar 

  • E. Massarini, P. Wasterby, L. Landstrom, C. Lejon, O. Beck, P.O. Andersson, Methodologies for assessment of limit of detection and limit of identification using surface-enhanced Raman spectroscopy. Sens. Actuators B Chem. 207, 437 (2015)

    Article  Google Scholar 

  • L.C. Mecker, K.M. Tyner, J.F. Kauffman, S. Arzhantsev, D.J. Mans, C.M. Gryniewicz-Ruzicka, Selective melamine detection in multiple sample matrices with a portable Raman instrument using SERS-active gold nanoparticles. Anal. Chim. Acta 733, 48 (2012)

    Article  Google Scholar 

  • M.J. Natan, Concluding remarks-surface enhanced Raman scattering. Faraday Discuss. 132, 321 (2006)

    Article  ADS  Google Scholar 

  • K.D. Osberg, M. Rycenga, G.R. Bourret, K.A. Brown, C.A. Mirkin, Dispersible surface-enhanced Raman scattering nanosheets. Adv. Mat. 24, 6065 (2012)

    Article  Google Scholar 

  • J. Palacký, P. Mojzeš, J. Bok, SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations, J. Raman Spectrosc. 42, 1528 (2011)

    Google Scholar 

  • V. Peksa, M. Jahn, L. Štolcová, V. Schulz, J. Proška, M. Procházka, K. Weber, D. Cialla-May, J. Popp, Quantitative SERS analysis of azorubine (E 122) in sweet drinks. Anal. Chem. 87, 2840 (2015)

    Article  Google Scholar 

  • B. Peng, G.Y. Li, D.H. Li, S. Dodson, Q. Zhang, J. Zhang, Y.H. Lee, H.V. Demir, X.Y. Ling, Q.H. Xiong, Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano 7, 5993 (2013)

    Article  Google Scholar 

  • V. Rana, M.V. Canamares, T. Kubic, M. Leona, J.R. Lombardi, Surface-enhanced Raman spectroscopy for trace identification of controlled substances: morphine, codeine, and hydrocodone. J. Forensic Sci. 56, 200 (2011)

    Article  Google Scholar 

  • A.G. Ryder, Surface enhanced Raman scattering for narcotic detection and applications to chemical biology. Curr. Opin. Chem. Biol. 9, 489 (2005)

    Article  Google Scholar 

  • B. Sagmuller, B. Schwarze, G. Brehm, S. Schneider, Application of SERS spectroscopy to the identificationof (3, 4-methylenedioxy)amphetamine in forensic samples utilizing matrixstabilized silver halides. Analyst 126, 2066 (2001)

    Article  ADS  Google Scholar 

  • W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, B. Ren, Reliable quantitative SERS qnalysis facilitated by core–shell nanoparticles with embedded internal standards. Angew. Chem. Int. Ed. 54, 7308 (2015)

    Article  Google Scholar 

  • M. Smith, K. Stambaugh, L. Smith, H.J. Son, A. Gardner, S. Cordova, K. Posey, D. Perry, A.S. Biris, Surface-enhanced vibrational investigation of adsorbed analgesics. Vib. Spectrosc. 49, 288 (2009)

    Article  Google Scholar 

  • I. Srnová-Šloufová, B. Vlčková, T.L. Snoeck, D.J. Stufkens, P. Matějka, Surface-enhanced Raman scattering and Surface-enhanced resonance Raman scattering excitation profiles of Ag-2,2’-bipyridine surface complexes and of [Ru(bpy)3]2+ on Ag colloidal surfaces: manifestations of the charge-transfer resonance contributions to the overall surface enhancement of Raman scattering. Inorg. Chem. 39, 3551 (2000)

    Article  Google Scholar 

  • J.M. Taguenang, A. Kassu, A. Sharma, D. Diggs, Surface enhanced Raman spectroscopy on the tip of a plastic optical fiber. Proc. SPIE 6641, 66411X (2007)

    Google Scholar 

  • L. Tang, S. Li, F. Han, L. Liu, L. Xu, W. Ma, H. Kuang, A. Li, L. Wang, C. Xu, SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens. Bioelectron. 71, 7 (2015a)

    Article  Google Scholar 

  • X. Tang, R. Dong, L. Yang, J. Liu, Fabrication of Au nanorod-coated Fe3O4 microspheres as SERS substrate for pesticide analysis by near-infrared excitation. J. Raman Spectrosc. 46, 470 (2015b)

    Article  ADS  Google Scholar 

  • V. Thomsen, D. Schatzlein, D. Mercuro, Limits of detection in spectroscopy. Spectroscopy 18, 112 (2003)

    Google Scholar 

  • C. Wang, C. Yu, Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology 26, 092001 (2015)

    Article  ADS  Google Scholar 

  • Y. Wang, Y.S. Li, Z.X. Zhang, D.Q. An, Surface-enhanced Raman scattering of some water insoluble drugs in silver hydrosols. Spectrochim. Acta A 59, 589 (2003)

    Article  ADS  Google Scholar 

  • H.Y. Wu, B.T. Cunningham, Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor. Nanoscale 6, 5162 (2014)

    Article  ADS  Google Scholar 

  • Y. Yang, Z.Y. Li, K. Yamaguchi, M. Tanemura, Z. Huang, D. Jiang, Y. Chen, F. Zhou, M. Nogami, Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4, 2663 (2012)

    Article  ADS  Google Scholar 

  • T. Yang, X. Guo, H. Wang, S. Fu, Y. Wen, H. Yang, Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints. Biosens. Bioelectron. 68, 350 (2015)

    Article  Google Scholar 

  • W.W. Yu, I.M. White, A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst 137, 1168 (2012)

    Article  ADS  Google Scholar 

  • W.W. Yu, I.M. White, Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138, 1020 (2013)

    Article  ADS  Google Scholar 

  • D.M. Zhang, Y. Xie, S.K. Deb, V.J. Davison, D. Ben-Amotz, Isotope edited internal standard method for quantitative surface-enhanced Raman spectroscopy. Anal. Chem. 77, 3563 (2005a)

    Article  Google Scholar 

  • X. Zhang, M.A. Young, O. Lyandres, R.P. Van Duyne, Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 127, 4484 (2005b)

    Article  Google Scholar 

  • X. Zhang, M. Zou, X. Qi, F. Liu, X. Zhu, B.H. Zhao, Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy. J. Raman Spectrosc. 41, 1655 (2010)

    Article  ADS  Google Scholar 

  • Z. Zhang, Q.S. Yu, H. Li, A. Mustapha, M.S. Lin, Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables. J. Food Sci. 80, N450 (2015)

    Article  Google Scholar 

  • J. Zheng, S. Pang, T.P. Labuza, L. He, Semi-quantification of surface-enhanced Raman scattering using a handheld Raman spectrometer: a feasibility study. Analyst 138, 7075 (2013)

    Article  ADS  Google Scholar 

  • J. Zheng, L. He, Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr. Rev. Food. Sci. Food Saf. 13, 317 (2014)

    Article  Google Scholar 

  • Y. Zhou, R. Ding, P. Joshi, P. Zhang, Quantitative surface-enhanced Raman measurements with embedded internal reference. Anal. Chim. Acta 874, 49 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Prochazka .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prochazka, M. (2016). Bioanalytical SERS Applications. In: Surface-Enhanced Raman Spectroscopy. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-23992-7_4

Download citation

Publish with us

Policies and ethics