Advertisement

Bioanalytical SERS Applications

  • Marek Prochazka
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

SERS spectroscopy can be applied for the detection of biologically relevant molecules in real complex matrix (e.g. human body fluids, drinks, food). The quantitative SERS measurements are, in practice, the result of considerable effort in optimizing an enhancing substrate and experimental conditions. This chapter will explain the basic principles of quantitative bioanalytical SERS measurements from the point of view of SERS-active substrates, internal intensity standards, sensitivity (limit of detection) and specificity. The successful SERS sensing of analytes with very low affinity for SERS-enhancing surface is possible due to suitable chemical modification of a metal surface to promote the capture of particular analytes. The results of some SERS bioanalytical applications on pharmaceuticals, drugs (including nicotine and cocaine), pollutants and pesticides, food contaminants and food additives (melamine, food colourants) and biowarfare agents (anthrax) will be summarized. The limits of detection as well as accuracy of SERS analysis are comparable and in some cases even better than these provided by standard analytic techniques (such as HPLC).

Keywords

SERS Spectrum SERS Signal SERS Substrate SERS Intensity SERS Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. P.H.B. Aoki, L.N. Furini, P. Alessio, A.E. Aliaga, C.J.L. Constantino, Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs. Rev. Anal. Chem. 32, 55 (2013)CrossRefGoogle Scholar
  2. M. Baia, S. Astilean, T. Iliescu, Raman and SERS Investigations of Pharmaceuticals (Springer, Berlin, 2008)CrossRefGoogle Scholar
  3. S.E.J. Bell, N.M.S. Sirimuthu, Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls). Analyst 129, 1032 (2004)ADSCrossRefGoogle Scholar
  4. S.E.J. Bell, N.M.S. Sirimuthu, Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 1012 (2008)CrossRefGoogle Scholar
  5. S.E.J. Bell, A. Stewart, Quantitative SERS methods, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley, Weinheim, 2011), pp. 71–86Google Scholar
  6. J.F. Betz, Y. Cheng, G.W. Rubloff, Direct SERS detection of contaminants in a complex mixture: rapid, single step screening for melamine in liquid infant formula. Analyst 137, 826 (2012)ADSCrossRefGoogle Scholar
  7. R.J.C. Brown, M.J.T. Milton, Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J. Raman Spectrosc. 39, 1313 (2008)ADSCrossRefGoogle Scholar
  8. C. Carrillo-Carrión, B.M. Simonet, M. Valcárcel, B. Lendl, Determination of pesticides by capillary chromatography and SERS detection using a novel silver-quantum dots “sponge” nanocomposite. J. Chromatogr. A 1225, 55 (2012)CrossRefGoogle Scholar
  9. H.W. Cheng, S.Y. Huan, H.L. Wu, G.L. Shen, R.Q. Yu, Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates. Anal. Chem. 81, 9902 (2009)CrossRefGoogle Scholar
  10. W. Cheung, I.T. Shadi, Y. Xu, R. Goodacre, Quantitative analysis of the banned food dye Sudan-1 using surface enhanced Raman scattering with multivariate chemometrics. J. Phys. Chem. C 114, 7285 (2010)CrossRefGoogle Scholar
  11. S. Cinta Pinzaru, I.E. Pavel, in Surface Enhanced Raman Spectroscopy, ed. by S. Schlücker. SERS and Pharmaceuticals (Wiley, Weinheim, 2011), pp. 129–154Google Scholar
  12. S. Cinta Pinzaru, I. Pavel, N. Leopold, W. Kiefer, Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering. J. Raman Spectrosc. 35, 338 (2004)ADSCrossRefGoogle Scholar
  13. S. Cinta Pinzaru, N. Peica, B. Küstner, S. Schlücker, M. Schmitt, T. Frosch, J.H. Faber, G. Bringmann, J. Popp, FT-Raman and NIR-SERS characterization of the antimalarial drugs chloroquine and mefloquine and their interaction with hematin. J. Raman Spectrosc. 37, 326 (2006)ADSCrossRefGoogle Scholar
  14. A.P. Craig, A.A. Franca, J. Irudayaraj, Surface-enhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol. 4, 369 (2013)CrossRefGoogle Scholar
  15. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827 (1997)ADSCrossRefGoogle Scholar
  16. Y. Deng, M.N. Idso, D.D. Galvan, Q.M. Yu, Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection. Anal. Chim. Acta 863, 41 (2015)CrossRefGoogle Scholar
  17. R.L. Dong, S.Z. Weng, L.B. Yang, J.H. Liu, Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines. Anal. Chem. 87, 2937 (2015)CrossRefGoogle Scholar
  18. H. Fang, X. Zhang, S.J. Zhang, L. Liu, Y.M. Zhao, H.J. Xu, Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy. Sens. Actuators B 213, 452 (2015)CrossRefGoogle Scholar
  19. S. Farquharson, C. Shende, F.E. Inscore, P. Maksymiuk, A. Gift, Analysis of 5-fluorouracil in saliva using surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 36, 208 (2005)Google Scholar
  20. K. Faulds, W.E. Smith, D. Graham, R.J. Lacey, Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS). Analyst 127, 282 (2002)ADSCrossRefGoogle Scholar
  21. R. Gao, N. Choi, S.I. Chang, S.H. Kang, J.M. Song, S.I. Cho, D.W. Lim, J. Choo, Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor. Anal. Chim. Acta 681, 87 (2010)CrossRefGoogle Scholar
  22. A. Gift, C. Shende, F.E. Inscore, P. Maksymiuk, S. Farquharson, Five-minute analysis of chemotherapy drugs and metabolites in saliva: evaluation dosage. Proc. SPIE 5261, 135 (2004)ADSCrossRefGoogle Scholar
  23. A.M. Giovannozzi, F. Rolle, M. Sega, M.C. Abete, D. Marchis, A.M. Rossi, Rapid and sensitive detection of melamine in milk with gold nanoparticles by surface enhanced Raman scattering. Food Chem. 159, 250 (2014)CrossRefGoogle Scholar
  24. L. Guerrini, J.V. Garcia-Ramos, C. Domingo, S. Sanchez-Cortes, Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced Raman scattering. Anal. Chem. 81, 953 (2009)CrossRefGoogle Scholar
  25. L. Guerrini, P. Leyton, M. Campos-Vallette, C. Domingo, J.V. Garcia-Ramos, S. Sanchez-Cortes, Detection of persistent organic pollutants by using SERS sensors based on organically functionalized Ag nanoparticles, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley, Weinheim, 2011), pp. 103–128Google Scholar
  26. Z. Guo, Z.Y. Cheng, R. Li, L. Chen, H.M. Lv, B. Zhao, J. Choo, One-step detection of melamine in milk by hollow gold chip based on surface-enhanced Raman scattering. Talanta 122, 80 (2014)CrossRefGoogle Scholar
  27. C.L. Haynes, C.R. Yonzon, X. Zhang, R.P. Van Duyne, Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agents and glucose detection. J. Raman Spectrosc. 36, 471 (2005)ADSCrossRefGoogle Scholar
  28. T. Henkel, A. März, J. Popp, SERS and Microfluidics, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley, Weinheim, 2011), pp. 173–190Google Scholar
  29. A.J. Hobro, B. Lendl, SERS and separation science, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley, Weinheim, 2011), pp. 155–171Google Scholar
  30. Y.X. Hu, S.L. Feng, F. Gao, E.C.Y. Li-Chan, E. Grant, X.N. Lu, Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chem. 176, 123 (2015)CrossRefGoogle Scholar
  31. F. Inscore, C. Shende, A. Sengupta, H. Huang, S. Farquharson, Detection of drugs of abuse in saliva by surface-enhanced Raman spectroscopy (SERS). Appl. Spectrosc. 65, 1004 (2011)ADSCrossRefGoogle Scholar
  32. I. Izquierdo-Lorenzo, S. Sanchez-Cortes, J.V. Garcia-Ramos, Adsorption of beta-adrenergic agonists used in sport doping on metal nanoparticles: a detection study based on surface-enhanced Raman scattering. Langmuir 26, 14663 (2010)CrossRefGoogle Scholar
  33. M. Jahn, S. Patze, T. Bocklitz, K. Weber, D. Cialla-May, J. Popp, Towards SERS based applications in food analytics: Lipophilic sensor layers for the detection of Sudan III in food matrices. Anal. Chim. Acta 860, 43 (2015)CrossRefGoogle Scholar
  34. E. Kämmer, K. Olschewski, T. Bocklitz, P. Rösch, K. Weber, D. Cialla-May, J. Popp, A new calibration concept for a reproducible quantitative detection based on SERS measurements in a microfluidic device demonstrated on the model analyte adenine. Phys. Chem. Chem. Phys. 16, 9056 (2014)CrossRefGoogle Scholar
  35. A. Kim, S.J. Barcelo, R.S. Williams, Z. Li, Melamine sensing in milk products by using surface enhanced Raman scattering. Anal. Chem. 84, 9303 (2012)Google Scholar
  36. M.P. Konrad, A.P. Doherty, S.E.J. Bell, Stable and uniform SERS signals from self-assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal. Chem. 85, 6783 (2013)CrossRefGoogle Scholar
  37. J. Kubackova, G. Fabriciova, P. Miskovsky, D. Jancura, S. Sanchez-Cortes, Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by Alkyl Dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Anal. Chem. 87, 663 (2015)CrossRefGoogle Scholar
  38. D. Kurouski, R.P. Van Duyne, In Situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Anal. Chem. 87, 2901 (2015)CrossRefGoogle Scholar
  39. S. Lee, J. Choi, L. Chen, B. Park, J.B. Kyong, G.H. Seong, J. Choo, Y. Lee, K.H. Shin, E.K. Lee, S.W. Joo, K.H. Lee, Anal. Chim. Acta 590, 139 (2007)CrossRefGoogle Scholar
  40. M. Li, in Applications of Vibrational Spectroscopy in Food Science ed. by E. Li-Chan, P.R. Griffiths, J.M. Chalmers. The applications of surface-enhanced Raman spectroscopy to identify and quantify chemical adulterants or contaminants in food (Wiley, Chichester, 2010), pp. 649–662Google Scholar
  41. J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392 (2010a)ADSCrossRefGoogle Scholar
  42. X. Li, G. Chen, L. Yang, Z. Jin, J. Liu, Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 20, 2815 (2010b)CrossRefGoogle Scholar
  43. D.W. Li, W.L. Zhai, Y.T. Li, Y.T. Long, Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim. Acta 181, 23 (2014)CrossRefGoogle Scholar
  44. M. Lin, L. He, J. Awika, L. Yang, D.R. Ledoux, H. Li, A. Mustapha, Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. J. Food Sci. 73, T129 (2008)CrossRefGoogle Scholar
  45. X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, Z.Q. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues. Anal. Bional. Chem. 394, 1729 (2009)CrossRefGoogle Scholar
  46. X. Lin, W.L.J. Hasi, X.T. Lou, S. Lin, F. Yang, B.S. Jia, D.Y. Lin, Z.W. Lu, Droplet detection: simplification and optimization of detecting conditions towards high sensitivity quantitative determination of melamine in milk without any pretreatment. RSC Adv. 4, 51315 (2014)CrossRefGoogle Scholar
  47. B.H. Liu, G.M. Han, Z.P. Zhang, R.Y. Liu, C.L. Jiang, S.H. Wang, M.Y. Han, Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal. Chem. 84, 255 (2012)CrossRefGoogle Scholar
  48. B. Liu, P. Zhou, X. Liu, X. Sun, H. Li, M.S. Lin, Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess. Technol. 6, 710 (2013)CrossRefGoogle Scholar
  49. A. Loren, J. Engelbrektsson, C. Eliasson, M. Josefson, J. Abrahamsson, M. Johansson, K. Abrahamsson, Internal standard in surface-enhanced Raman spectroscopy. Anal. Chem. 76, 7391 (2004)CrossRefGoogle Scholar
  50. M.B. Mamián-López, R.J. Poppi, Standard addition method applied to the urinary quantification of nicotine in the presence of cotinine and anabasine using surface enhanced Raman spectroscopy and multivariate curve resolution. Anal. Chim. Acta 760, 53 (2013)CrossRefGoogle Scholar
  51. A. März, K.R. Ackermann, D. Malsch, T. Bocklitz, T. Henkel, J. Popp, Towards a quantitative SERS approach - online monitoring of analytes in a microfluidic system with isotope-edited internal standards. J. Biophotonics 2, 232 (2009)CrossRefGoogle Scholar
  52. E. Massarini, P. Wasterby, L. Landstrom, C. Lejon, O. Beck, P.O. Andersson, Methodologies for assessment of limit of detection and limit of identification using surface-enhanced Raman spectroscopy. Sens. Actuators B Chem. 207, 437 (2015)CrossRefGoogle Scholar
  53. L.C. Mecker, K.M. Tyner, J.F. Kauffman, S. Arzhantsev, D.J. Mans, C.M. Gryniewicz-Ruzicka, Selective melamine detection in multiple sample matrices with a portable Raman instrument using SERS-active gold nanoparticles. Anal. Chim. Acta 733, 48 (2012)CrossRefGoogle Scholar
  54. M.J. Natan, Concluding remarks-surface enhanced Raman scattering. Faraday Discuss. 132, 321 (2006)ADSCrossRefGoogle Scholar
  55. K.D. Osberg, M. Rycenga, G.R. Bourret, K.A. Brown, C.A. Mirkin, Dispersible surface-enhanced Raman scattering nanosheets. Adv. Mat. 24, 6065 (2012)CrossRefGoogle Scholar
  56. J. Palacký, P. Mojzeš, J. Bok, SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations, J. Raman Spectrosc. 42, 1528 (2011)Google Scholar
  57. V. Peksa, M. Jahn, L. Štolcová, V. Schulz, J. Proška, M. Procházka, K. Weber, D. Cialla-May, J. Popp, Quantitative SERS analysis of azorubine (E 122) in sweet drinks. Anal. Chem. 87, 2840 (2015)CrossRefGoogle Scholar
  58. B. Peng, G.Y. Li, D.H. Li, S. Dodson, Q. Zhang, J. Zhang, Y.H. Lee, H.V. Demir, X.Y. Ling, Q.H. Xiong, Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano 7, 5993 (2013)CrossRefGoogle Scholar
  59. V. Rana, M.V. Canamares, T. Kubic, M. Leona, J.R. Lombardi, Surface-enhanced Raman spectroscopy for trace identification of controlled substances: morphine, codeine, and hydrocodone. J. Forensic Sci. 56, 200 (2011)CrossRefGoogle Scholar
  60. A.G. Ryder, Surface enhanced Raman scattering for narcotic detection and applications to chemical biology. Curr. Opin. Chem. Biol. 9, 489 (2005)CrossRefGoogle Scholar
  61. B. Sagmuller, B. Schwarze, G. Brehm, S. Schneider, Application of SERS spectroscopy to the identificationof (3, 4-methylenedioxy)amphetamine in forensic samples utilizing matrixstabilized silver halides. Analyst 126, 2066 (2001)ADSCrossRefGoogle Scholar
  62. W. Shen, X. Lin, C. Jiang, C. Li, H. Lin, J. Huang, S. Wang, G. Liu, X. Yan, Q. Zhong, B. Ren, Reliable quantitative SERS qnalysis facilitated by core–shell nanoparticles with embedded internal standards. Angew. Chem. Int. Ed. 54, 7308 (2015)CrossRefGoogle Scholar
  63. M. Smith, K. Stambaugh, L. Smith, H.J. Son, A. Gardner, S. Cordova, K. Posey, D. Perry, A.S. Biris, Surface-enhanced vibrational investigation of adsorbed analgesics. Vib. Spectrosc. 49, 288 (2009)CrossRefGoogle Scholar
  64. I. Srnová-Šloufová, B. Vlčková, T.L. Snoeck, D.J. Stufkens, P. Matějka, Surface-enhanced Raman scattering and Surface-enhanced resonance Raman scattering excitation profiles of Ag-2,2’-bipyridine surface complexes and of [Ru(bpy)3]2+ on Ag colloidal surfaces: manifestations of the charge-transfer resonance contributions to the overall surface enhancement of Raman scattering. Inorg. Chem. 39, 3551 (2000)CrossRefGoogle Scholar
  65. J.M. Taguenang, A. Kassu, A. Sharma, D. Diggs, Surface enhanced Raman spectroscopy on the tip of a plastic optical fiber. Proc. SPIE 6641, 66411X (2007)Google Scholar
  66. L. Tang, S. Li, F. Han, L. Liu, L. Xu, W. Ma, H. Kuang, A. Li, L. Wang, C. Xu, SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens. Bioelectron. 71, 7 (2015a)CrossRefGoogle Scholar
  67. X. Tang, R. Dong, L. Yang, J. Liu, Fabrication of Au nanorod-coated Fe3O4 microspheres as SERS substrate for pesticide analysis by near-infrared excitation. J. Raman Spectrosc. 46, 470 (2015b)ADSCrossRefGoogle Scholar
  68. V. Thomsen, D. Schatzlein, D. Mercuro, Limits of detection in spectroscopy. Spectroscopy 18, 112 (2003)Google Scholar
  69. C. Wang, C. Yu, Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology 26, 092001 (2015)ADSCrossRefGoogle Scholar
  70. Y. Wang, Y.S. Li, Z.X. Zhang, D.Q. An, Surface-enhanced Raman scattering of some water insoluble drugs in silver hydrosols. Spectrochim. Acta A 59, 589 (2003)ADSCrossRefGoogle Scholar
  71. H.Y. Wu, B.T. Cunningham, Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor. Nanoscale 6, 5162 (2014)ADSCrossRefGoogle Scholar
  72. Y. Yang, Z.Y. Li, K. Yamaguchi, M. Tanemura, Z. Huang, D. Jiang, Y. Chen, F. Zhou, M. Nogami, Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4, 2663 (2012)ADSCrossRefGoogle Scholar
  73. T. Yang, X. Guo, H. Wang, S. Fu, Y. Wen, H. Yang, Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints. Biosens. Bioelectron. 68, 350 (2015)CrossRefGoogle Scholar
  74. W.W. Yu, I.M. White, A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst 137, 1168 (2012)ADSCrossRefGoogle Scholar
  75. W.W. Yu, I.M. White, Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138, 1020 (2013)ADSCrossRefGoogle Scholar
  76. D.M. Zhang, Y. Xie, S.K. Deb, V.J. Davison, D. Ben-Amotz, Isotope edited internal standard method for quantitative surface-enhanced Raman spectroscopy. Anal. Chem. 77, 3563 (2005a)CrossRefGoogle Scholar
  77. X. Zhang, M.A. Young, O. Lyandres, R.P. Van Duyne, Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 127, 4484 (2005b)CrossRefGoogle Scholar
  78. X. Zhang, M. Zou, X. Qi, F. Liu, X. Zhu, B.H. Zhao, Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy. J. Raman Spectrosc. 41, 1655 (2010)ADSCrossRefGoogle Scholar
  79. Z. Zhang, Q.S. Yu, H. Li, A. Mustapha, M.S. Lin, Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables. J. Food Sci. 80, N450 (2015)CrossRefGoogle Scholar
  80. J. Zheng, S. Pang, T.P. Labuza, L. He, Semi-quantification of surface-enhanced Raman scattering using a handheld Raman spectrometer: a feasibility study. Analyst 138, 7075 (2013)ADSCrossRefGoogle Scholar
  81. J. Zheng, L. He, Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr. Rev. Food. Sci. Food Saf. 13, 317 (2014)CrossRefGoogle Scholar
  82. Y. Zhou, R. Ding, P. Joshi, P. Zhang, Quantitative surface-enhanced Raman measurements with embedded internal reference. Anal. Chim. Acta 874, 49 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations