Skip to main content

Basics of Surface-Enhanced Raman Scattering (SERS)

  • Chapter
  • First Online:
Surface-Enhanced Raman Spectroscopy

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Surface-enhanced Raman scattering (SERS) spectroscopy is based on the enormous enhancement of Raman scattering of molecules adsorbed on suitable metallic (mainly silver and gold) nanostructures. Two mechanisms contribute to the total enhancement: the electromagnetic one based on resonance excitations of surface plasmons in the metal and the chemical (or molecular) one increasing the polarizability of the molecule. Average enhancement factors are about 104–106 but even values about 1011 can be achieved in some cases. This chapter will briefly introduce the basics of SERS theory and some experimental aspects of SERS (choice of metal, distance dependence, selection rules, enhancement factors, “hot spots”, single-molecule SERS, resonant SERS). The SERS substrate plays a key role in any SERS application. An overview of SERS-active substrates employed in bioanalytical, biomolecular and medical SERS applications and their properties will be discussed. It includes nanoparticles in suspension, nanoparticles assembled and immobilized on solid substrates (bottom-up approach) and nanostructures fabricated directly on solid substrate (top-down approach). The related enhancing techniques (tip-enhanced RS—TERS, shell-isolated nanoparticles-enhanced Raman scattering—SHINERS, surface-enhanced infrared absorption—SEIRA and surface-enhanced fluorescence—SEF) will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    μind and E locinc) are vectors, while αmolecule is a tensor.

References

  • M.E. Abdelsalam, P.N. Bartlett, J.J. Baumberg, S. Cintra, T.A. Kelf, A.E. Russell, Electrochemical SERS at a structured gold surface. Electrochem. Comm. 7, 740 (2005)

    Article  Google Scholar 

  • H. Aouani, M. Rahmani, H. Šípová, V. Torres, K. Hegnerová, M. Beruete, J. Homola, M. Hong, M. Navarro-Cía, S.A. Maier, Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies. J. Phys. Chem. C 117, 18620 (2013)

    Article  Google Scholar 

  • R. Aroca, Surface-enhanced vibrational spectroscopy (Wiley, Chichester, 2006)

    Book  Google Scholar 

  • R. Aroca, Plasmon enhanced spectroscopy. Phys. Chem. Chem. Phys. 15, 5355 (2013)

    Article  Google Scholar 

  • R.F. Aroca, R.A. Alvarez-Puebla, N. Pieczonka, S. Sánchez-Cortés, J.V. García-Ramos, Surface-enhanced Raman scattering on colloidal nanostructures. Adv. Colloid Interface Sci. 116, 45 (2005)

    Article  Google Scholar 

  • M. Baia, L. Baia, S. Astilean, Gold nanostructured films deposited on PS colloidal crystal templates for surface-enhanced Raman spectroscopy. Chem. Phys. Lett. 404, 3 (2005)

    Article  ADS  Google Scholar 

  • M. Baia, S. Astilean, T. Iliesku, New developments in SERS-active substrates, in Raman and SERS Investigations of Pharmaceuticals (Springer, Berlin, 2008), pp. 187–205

    Google Scholar 

  • M.J. Banholzer, J.E. Millstone, L. Qin, C.A. Mirkin, Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 885 (2008)

    Article  Google Scholar 

  • E.A. Batista, D.P. dos Santos, G.F.S. Andrade, A.C. Sant’Ana, A.G. Brolo, M.L.A. Temperini, Using polycarbonate membranes as templates for the preparation of Au nanostructures for surface-enhanced Raman scattering. J. Nanosci. Nanotechnol. 9, 3233 (2009)

    Article  Google Scholar 

  • E.J. Blackie, E.C. Le Ru, P.G. Etchegoin, Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J. Am. Chem. Soc. 131, 14466 (2009)

    Article  Google Scholar 

  • A.G. Brolo, D.E. Irish, B.D. Smith, Applications of surface enhanced Raman scattering to the study of metal-adsorbate intractions. J. Mol. Struct. 405, 29 (1997)

    Article  ADS  Google Scholar 

  • R.J.C. Brown, M.J.T. Milton, Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J. Raman Spectrosc. 39, 1313 (2008)

    Article  ADS  Google Scholar 

  • A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241 (1998)

    Article  Google Scholar 

  • Y. Cao, D. Li, F. Jiang, Y. Yang, Z. Huang, Engineering metal nanostructures for SERS applications. J. Nanomater. 2013, 123812 (2013)

    Google Scholar 

  • S. Chen, D.L. Carroll, Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2, 1003 (2002)

    Article  ADS  Google Scholar 

  • J.A. Creighton, C.G. Blatchford, M.G. Albrecht, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver and gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2 75, 790 (1979)

    Google Scholar 

  • G. Das, M. Chirumamilla, A. Toma, A. Gopalakrishnan, R.P. Zaccaria, A. Alabastri, M. Leoncini, E. Di Fabrizio, Plasmon based biosensor for distinguishing different peptides mutation states. Sci. Rep. 3, 1792 (2013)

    Article  ADS  Google Scholar 

  • J.A. Dieringer, R.B. Lettan II, K.A. Scheidt, R.P. Van Duyne, A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129, 16249 (2007)

    Article  Google Scholar 

  • J.D. Driskell, S. Shanmukh, Y. Liu, S.B. Chaney, X.J. Tang, P. Zhao, R.A. Dluhy, The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates. J. Phys. Chem. C 112, 895 (2008)

    Article  Google Scholar 

  • A.P.D. Elfick, A.R. Downes, R. Mouras, Development of tip-enhanced optical spectroscopy for biological applications: a review. Anal. Bioanal. Chem. 396, 45 (2010)

    Article  Google Scholar 

  • M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257 (2001)

    Article  Google Scholar 

  • P.G. Etchegoin, E.C. Le Ru, Basic electromagnetic theory of SERS, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications, ed. by S. Schlücker (Wiley-WCH, Weinheim, 2011), pp. 1–38

    Google Scholar 

  • M. Fan, A.G. Brolo, Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys. Chem. Chem. Phys. 11, 7381 (2009)

    Article  Google Scholar 

  • M. Fan, G.F.S. Andrade, A.G. Brolo, A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 693, 7 (2011)

    Article  Google Scholar 

  • Y. Fang, N.-H. Seong, D.D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388 (2008)

    Article  ADS  Google Scholar 

  • A. Fojtik, A. Henglein, Laser ablation of films and suspended particles in a solvent: formation of cluster and colloid solutions. Ber. Bunsenges. Phys. Chem. 97, 252 (1993)

    Article  Google Scholar 

  • H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. Sutherland, M. Zäch, B. Kasemo, “Hole mask”colloidal lithography. Adv. Mater. 19, 4297 (2007)

    Article  Google Scholar 

  • R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Self-assembled metal colloid monolayers-an approach to SERS substrates. Science 267, 1629 (1995)

    Article  ADS  Google Scholar 

  • R.G. Freeman, M.B. Hommer, K.C. Grabar, M.A. Jackson, M.J. Natan, Ag-Clad Au nanoparticles: Novel aggregation, optical and surface-enhanced Raman scattering properties. J. Phys. Chem. 100, 718 (1996)

    Article  Google Scholar 

  • R.G. Freeman, R.M. Bright, M.B. Hommer, M.J. Natan, Size selection of colloidal gold aggregates by filtration: effect on surface-enhanced Raman scattering intensities. J. Raman Spectrosc. 30, 733 (1999)

    Article  ADS  Google Scholar 

  • A. Gopalakrishnan, M. Malerba, S. Tuccio, S. Panaro, E. Miele, M. Chirumamilla, S. Santoriello, C. Dorigoni, A. Giugni, R. Proietti Zaccaria, C. Liberale, F. De Angelis, L. Razzari, R. Krahne, A. Toma, G. Das, E. Di Fabrizio, Nanoplasmonic structures for biophotonic applications: SERS overview. Ann. Phys. 524, 620 (2012) (Berlin)

    Google Scholar 

  • N.G. Greeneltch, M.G. Blaber, A.I. Henry, G.C. Schatz, R.P. Van Duyne, Immobilized NR assemblies: fabrication and understanding of large area surface-enhanced Raman spectroscopy substrates. Anal. Chem. 85, 2297 (2013)

    Article  Google Scholar 

  • S. Guo, S. Dong, Metal nanomaterial-based self-assembly: development, electrochemical sensing and SERS applications. J. Mat. Chem. 21, 16704 (2011)

    Article  Google Scholar 

  • N. Hajduková, M. Procházka, J. Štěpánek, M. Špírková, Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: preparation, characterization and SERS spectral testing. Colloid Surf. A-Physicochem. Eng. Asp. 301, 264 (2007)

    Article  Google Scholar 

  • Y. Han, S. Sukhishvili, H. Du, J. Cefaloni, B. Smolinsko, Layer-by-Layer self-assembly of oppositely charged Ag nanoparticles on silica microspheres for trace analysis of aqueous solutions using surface-enhanced Raman scattering. J. Nanosci. Nanotechnol. 8, 5791 (2008)

    Article  Google Scholar 

  • A. Hartstein, J.R. Kirtley, J.C. Tsang, Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers. Phys. Rev. Lett. 45, 201 (1980)

    Article  ADS  Google Scholar 

  • C.L. Haynes, C.R. Yonzon, X. Zhang, R.P. Van Duyne, Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agents and glucose detection. J. Raman Spectrosc. 36, 471 (2005)

    Article  ADS  Google Scholar 

  • S.M. Heard, F. Grieser, C.G. Barraclough, J.V. Sanders, The characterization of Ag sols by electron-microscopy, optical-absorption and electrophoresis. J. Colloid Interf. Sci. 93, 545 (1983)

    Article  Google Scholar 

  • J.C. Hulteen, R.P. Van Duyne, Nanosphere lithography—a materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 13, 1553 (1995)

    Article  ADS  Google Scholar 

  • H. Im, K.C. Bantz, S.H. Lee, T.W. Johnson, C.L. Haynes, S.-H. Oh, Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 25, 2678 (2013)

    Article  Google Scholar 

  • Y.H. Jang, K. Chung, L.N. Quan, B. Špačková, H. Šípová, S. Moon, W.J. Cho, H.Y. Shin, Y.J. Jang, J.E. Lee, S.T. Kochuveedu, M.J. Yoon, J. Kim, S. Yoon, J.K. Kim, D. Kim, J. Homola, D.H. Kim, Configuration-controlled Au nanocluster arrays on inverse micelle nano patterns: versatile platforms for SERS and LSPR sensors. Nanoscale 5, 12261 (2013)

    Article  ADS  Google Scholar 

  • T.R. Jensen, M.D. Malinsky, C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 104, 10549 (2000)

    Article  Google Scholar 

  • V. Joseph, M. Gensler, S. Seifert, U. Gernert, J.P. Rabe, J. Kneipp, Nanoscopic properties and application of mix-and-match plasmonic surfaces for microscopic SERS. J. Phys. Chem. C 116, 6859 (2012)

    Article  Google Scholar 

  • M. Kahl, E. Voges, S. Kostrewa, C. Viets, W. Hill, Periodically structured metallic substrates for SERS. Sens. Actuator B-Chem. 51, 285 (1998)

    Article  Google Scholar 

  • P. Kambhampati, C.M. Child, M.C. Foster, A. Campion, On the chemical mechanism of surface enhanced Raman scattering: experiment and theory. J. Chem. Phys. 108, 5013 (1998)

    Article  ADS  Google Scholar 

  • K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  • K. Kneipp, H. Kneipp, H.G. Bohr, Single-molecule SERS spectroscopy, in Surface-Enhanced Raman Scattering: Physics and Applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer-Verlag, Berlin Heidelberg, 2006), pp. 261–277 (Top. Appl. Phys.)

    Google Scholar 

  • H. Ko, S. Singamaneni, V.V. Tsukruk, Nanostructured surfaces and assemblies as SERS media. Small 4, 1576 (2008)

    Article  Google Scholar 

  • P.S. Kumar, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, F.J. Garcia de Abajo, L.M. Liz-Marzan, High-yield synthesis and optical response of gold nanostars. Nanotechnology 19, 015606 (2008)

    Article  ADS  Google Scholar 

  • J.R. Lakowicz, C.D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, J. Huang, Advances in surface-enhanced fluorescence. J. Fluoresc. 14, 425 (2004)

    Article  Google Scholar 

  • I.A. Larmour, K. Faulds, D. Graham, SERS activity and stability of the most frequently used silver colloids. J. Raman Spectrosc. 43, 202 (2012)

    Article  ADS  Google Scholar 

  • P.C. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86, 3391 (1982)

    Article  Google Scholar 

  • N. Leopold, B. Lendl, A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 107, 5723 (2003)

    Article  Google Scholar 

  • E.C. Le Ru, P.G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009)

    Google Scholar 

  • E.C. Le Ru, M. Meyer, P.G. Etchegoin, Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J. Phys. Chem. B 110, 1944 (2006)

    Article  Google Scholar 

  • E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 111, 13794 (2007)

    Article  Google Scholar 

  • J.F. Li, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), in Frontiers of Surface-Enhanced Raman Scattering: Single Nanoparticles and Single Cells, ed. by Y. Ozaki, K. Kneipp, R. Aroca (Wiley, Chichester, 2014), pp. 163–192

    Google Scholar 

  • Z. Li, W.M. Tong, W.F. Stickle, D.L. Neiman, R.S. Williams, L.L. Hunter, A.A. Talin, D. Li, S.R.J. Brueck, Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates. Langmuir 23, 5135 (2007)

    Article  Google Scholar 

  • J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang, Z.Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392 (2010)

    Article  ADS  Google Scholar 

  • M. Li, S.K. Cushing, J.M. Zhang, J. Lankford, Z.P. Aguilar, D.L. Ma, N.Q. Wu, Shape-dependent surface-enhanced Raman scattering in gold–Raman probe–silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 23, 115501 (2012a)

    Article  ADS  Google Scholar 

  • X. Li, H. Hu, D. Li, Z. Shen, Q. Xiong, S. Li, H.J. Fan, Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate. ACS Appl. Mater. Interfaces 4, 2180 (2012b)

    Article  Google Scholar 

  • J.F. Li, X.D. Tian, S.B Li, J.R. Anema, Z.L. Yang, Y. Ding, Y.F. Wu, Y.M. Zheng, Q.Z. Chen, B. Ren, Z.L. Wang, Z.Q. Tian, Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Protoc. 8, 52 (2013)

    Google Scholar 

  • X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, Z.Q. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues. Anal. Bional. Chem. 394, 1729 (2009)

    Article  Google Scholar 

  • X. Liu, Y. Shao, Y. Tang, K.-F. Yao, Highly uniform and reproducible Surface enhanced Raman scattering on air-stable metallic glassy nanowire array. Sci. Rep. 4, 5835 (2014)

    Google Scholar 

  • M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, Boca Raton, 2002)

    Google Scholar 

  • M. Moskovits, Surface-enhanced spectroscopy. Rev. Modern Phys. 57, 783 (1985)

    Article  ADS  Google Scholar 

  • M. Moskovits, Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 15, 5301 (2013)

    Article  Google Scholar 

  • P. Negri, R.A. Dluhy, Ag nanorod based surface-enhanced Raman spectroscopy applied to bioanalytical sensing, J. Biophotonics 6, 20 (2013)

    Google Scholar 

  • P. Negri, N.E. Marotta, L.A. Bottomley, R.A. Dluhy, Removal of surface contamination and self-assembled monolayers (SAMs) from silver (Ag) nanorod substrates by plasma cleaning with argon. Appl. Spectrosc. 65, 66 (2011)

    Article  ADS  Google Scholar 

  • S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102 (1997)

    Article  Google Scholar 

  • S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243 (1998)

    Article  ADS  Google Scholar 

  • S.J. Oldenburg, J.B. Jackson, S.L. Westcott, N.J. Halas, Infrared extinction properties of gold nanoshells. Appl. Phys. Lett. 75, 2897 (1999)

    Article  ADS  Google Scholar 

  • L.G. Olson, Y.S. Lo, T.P. Beebe, J.M. Harris, Characterization of silane-modified immobilized gold colloids as a substrate for surface-enhanced Raman spectroscopy. Anal. Chem. 73, 4268 (2001)

    Article  Google Scholar 

  • C.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticles shape dependence. Anal. Chem. 77, 3261 (2005)

    Article  Google Scholar 

  • M. Osawa, Surface-enhanced infrared absorption. Top. Appl. Phys. 81, 163 (2001)

    Article  ADS  Google Scholar 

  • A. Otto, The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 36, 497 (2005)

    Article  ADS  Google Scholar 

  • A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-ehnanced Raman scattering. J. Phys.: Condens. Matter 4, 1143 (1992)

    ADS  Google Scholar 

  • A. Otto, A. Bruckbauer, Y.X. Chen, On the chloride activation in SERS and single molecule SERS. J. Mol. Struct. 661–662, 501 (2003)

    Article  Google Scholar 

  • V. Peksa, M. Jahn, L. Štolcová, V. Schulz, J. Proška, M. Procházka, K. Weber, D. Cialla-May, J. Popp, Quantitative SERS analysis of azorubine (E 122) in sweet drinks. Anal. Chem. 87, 2840 (2015)

    Article  Google Scholar 

  • N.M.B. Perney, F.J.G. de Abajo, J.J. Baumberg, A. Tang, M.C. Netti, M.D.B. Charlton, M.E. Zoorob, Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering. Phys. Rev. B 76, 035426 (2007)

    Article  ADS  Google Scholar 

  • B. Pettinger, Tip-enhanced Raman spectroscopy (TERS), in Surface-Enhanced Raman Scattering: Physics and Applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer-Verlag, Berlin Heidelberg, 2006), pp. 217–240 (Top. Appl. Phys.)

    Google Scholar 

  • N.P.W. Pieczonka, R.F. Aroca, Single molecule analysis by surface-enhanced Raman scattering. Chem. Soc. Rev. 37, 946 (2008)

    Article  Google Scholar 

  • M. Procházka, P. Mojzeš, J. Štěpánek, B. Vlčková, P.-Y. Turpin, Probing applications of laser ablated Ag colloids in SERS spectroscopy: Improvement of ablation procedure and SERS spectral testing. Anal. Chem. 69, 5103 (1997a)

    Article  Google Scholar 

  • M. Procházka, P. Mojzeš, B. Vlčková, P.-Y. Turpin, Surface-enhanced resonance Raman scattering from copper(II) 5,10,15,20-tetrakis(1-methyl-4-pyridyl)porphyrin adsorbed on aggregated and nonaggregated silver colloids. J. Phys. Chem. B 101, 3161 (1997b)

    Article  Google Scholar 

  • M. Procházka, P. Šimáková, N. Hajduková-Šmídová, SE(R)RS microspectroscopy of porphyrins on immobilized Au nanoparticles: testing spectral sensitivity and reproducibility. Colloid Surf. A-Physicochem. Eng. Asp. 402, 24 (2012)

    Article  Google Scholar 

  • E. Prodan, P. Nordlander, Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett. 3, 543 (2003)

    Article  ADS  Google Scholar 

  • L. Rivas, S. Sánchez-Cortés, J.V. García-Ramos, G. Morcillo, Mixed silver/gold colloids: a study of their formation, morphology, and surface-enhanced Raman activity. Langmuir 16, 9722 (2000)

    Article  Google Scholar 

  • J.M. Romo-Herrera, R.A. Alvarez-Puebla, L.M. Liz-Marzan, Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3, 1304 (2011)

    Article  ADS  Google Scholar 

  • G.C. Schatz, M.A. Young, R. P. Van Duyne, Electromagnetic mechanism of SERS, in Surface-Enhanced Raman Scattering: Physics and Applications, vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer-Verlag, Berlin Heidelberg, 2006), pp. 19–46 (Top. Appl. Phys.)

    Google Scholar 

  • S. Schlücker (ed.), Surface enhanced Raman spectroscopy: Analytical, biophysical and life science applications (Wiley-WCH, Weinheim, 2011)

    Google Scholar 

  • S. Schlücker, Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756 (2014)

    Article  Google Scholar 

  • M.S. Schmidt, J. Hübner, A. Boisen, Large area fabrication of leaning silicon nanopillars for surface-enhanced Raman spectroscopy, Adv. Mater. 24, OP11 (2012)

    Google Scholar 

  • Y. Shao, Y. Jin, S. Dong, Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem. Commun. 9, 1104 (2004)

    Article  Google Scholar 

  • D.O. Sigle, E. Perkins, J.J. Baumberg, S. Mahajan, Reproducible deep-UV SERRS on aluminium nanovoids. J. Phys. Chem. Lett. 4, 1449 (2013)

    Article  Google Scholar 

  • I. Srnová-Šloufová, B. Vlčková, T.L. Snoeck, D.J. Stufkens, P. Matějka, Surface-enhanced Raman scattering and Surface-enhanced resonance Raman scattering excitation profiles of Ag-2,2′-bipyridine surface complexes and of [Ru(bpy)3]2+ on Ag colloidal surfaces: manifestations of the charge-transfer resonance contributions to the overall surface enhancement of Raman scattering. Inorg. Chem. 39, 3551 (2000)

    Article  Google Scholar 

  • P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601 (2008)

    Article  Google Scholar 

  • R.L. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Nanoscale chemical analysis by tip-enhance Raman spectroscopy. Chem. Phys. Lett. 318, 131 (2000)

    Article  ADS  Google Scholar 

  • M.I. Stockman, V.M. Shalaev, M. Moskovits, R. Botet, T.F. George, Enhanced Raman scattering by fractal clusters: scale-invariant theory. Phys. Rev. B 46, 2821 (1992)

    Article  ADS  Google Scholar 

  • L. Štolcová, J. Proška, M. Procházka, Hexagonally ordered gold semishells as tunable SERS substrates, in Proceedings of Nanocon (Czech Republic, Brno, 2012), pp. 225–229

    Google Scholar 

  • L. Štolcová, M. Domonkos, T. Ižák, J. Proška, M. Procházka, A. Kromka, Plasma treatment as a versatile technique for preparation of plasmonic nanoantenna arrays, in Electromagnetics Research Symposium (PIERS) Proceedings, pp. 426–430. Stockholm, Sweden, 12–15 Aug 2013

    Google Scholar 

  • M. Šubr, M. Petr, V. Peksa, O. Kylián, J. Hanuš, M. Procházka, Ag NR arrays for SERS: aspects of spectral reproducibility, surface contamination, and spectral sensitivity. J. Nanomater. 2015, 729231 (2015)

    Article  Google Scholar 

  • Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002)

    Article  ADS  Google Scholar 

  • A.R. Tao, J. Huang, A.P. Yang, Langmuir–blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 41, 1662 (2008)

    Article  Google Scholar 

  • M. Tabatabaei, M. Najiminaini, K. Davieau, B. Kaminska, M.R. Singh, J.J.L. Carson, F. Lagugné-Labarthet, Tunable 3D plasmonic cavity nanosensors for surface-enhanced Raman spectroscopy with sub-femtomolar limit of detection. ACS Photonics 2, 752 (2015)

    Article  Google Scholar 

  • Z.Q. Tian, B. Ren, D.Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106, 9463 (2002)

    Article  Google Scholar 

  • Z.Q. Tian, Z.L. Yang, B. Ren, D.Y. Wu, SERS from transition metals and excited by ultraviolet light, in Surface-Enhanced Raman Scattering: Physics and Applications vol. 103, ed. by K. Kneipp, M. Moskovits, H. Kneipp (Springer-Verlag, Berlin Heidelberg, 2006), pp. 125–146 (Top. Appl. Phys.)

    Google Scholar 

  • F. Toderas, M. Baia, L. Baia, S. Astilean, Controlling gold nanoparticle assemblies for efficient surface-enhanced Raman scattering and localized surface plasmon resonance sensors. Nanotechnology 18, 255702 (2007)

    Article  ADS  Google Scholar 

  • N. Valley, N. Greeneltch, R.P. Van Duyne, G.C. Schatz, A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): theory and experiment. J. Phys. Chem. Lett. 4, 2599 (2013)

    Article  Google Scholar 

  • H. Wang, J. Kundu, N.J. Halas, Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate. Angew. Chem. Int. Ed. 46, 9040 (2007)

    Article  Google Scholar 

  • Y. Wang, E. Wang, Nanoparticle SERS substrates, in Surface enhanced Raman spectroscopy: analytical, biophysical and life science applications, ed. by S. Schlücker (Wiley-WCH, Weinheim, 2011), pp. 39–70

    Google Scholar 

  • Y. Wang, N. Lu, W. Wang, L. Liu, L. Feng, Z. Zeng, H. Li, W. Xu, Z. Wu, W. Hu, Y. Lu, L. Chi, Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 6, 159 (2013)

    Article  Google Scholar 

  • D.A. Weitz, S. Garoff, J.I. Gersten, A. Nitzan, The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. J. Chem. Phys. 78, 5324 (1983)

    Article  ADS  Google Scholar 

  • D.A. Weitz, M.Y. Lin, C.J. Sandroff, Colloidal aggregation revisited: new insights based on fractal structure and surface-enhanced Raman scattering. Surf. Sci. 158, 147 (1985)

    Article  ADS  Google Scholar 

  • E. Wentrup-Byrne, S. Sarinas, P.M. Fredericks, Analytical potential of surface-enhanced Fourier transform Raman spectroscopy on silver colloids. Appl. Spectrosc. 47, 1192 (1993)

    Article  ADS  Google Scholar 

  • D.Y. Wu, J.F. Li, B. Ren, Z.Q. Tian, Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025 (2008)

    Article  Google Scholar 

  • H. Wu, F. Bai, Z. Sun, R.E. Haddad, D.M. Boye, Z. Wang, J.Y. Huang, H. Fan, Nanostructured gold architectures formed through high pressure-driven sintering of spherical nanoparticle arrays. J. Am. Chem. Soc. 132, 12826 (2010a)

    Article  Google Scholar 

  • L.Y. Wu, B.M. Ross, S. Hong, L.P. Lee, Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 6, 503 (2010b)

    Article  Google Scholar 

  • L. Xia, M. Chen, X. Zhao, Z. Zhang, J. Xia, H. Xu, M. Sun, Visualized method of chemical enhancement mechanism on SERS and TERS. J. Raman Spectrosc. 45, 533 (2014)

    ADS  Google Scholar 

  • H. Xu, J. Aizpurua, M. Käll, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman. Phys. Rev. E 62, 4318 (2000)

    Article  ADS  Google Scholar 

  • M.J. Xu, N. Lu, H.B. Xu, D.P. Qi, Y.D. Wang, L.F. Chi, Fabrication of functional silver nanobowl arrays via sphere lithography. Langmuir 25, 11216 (2009)

    Article  Google Scholar 

  • N.R. Yaffe, E.W. Blanch, Effects and anomalies that can occur in SERS spectra of biological molecules when using a wide range of aggregating agents for hydroxylamine-reduced and citrate-reduced silver colloids. Vib. Spectrosc. 48, 196 (2008)

    Article  Google Scholar 

  • J. Yang, M. Palla, F.G. Bosco, T. Rindzevicius, T.S. Alstrǿm, M.S. Schmidt, A. Boisen, J. Ju, Q. Lin, Surface-enhanced Raman spectroscopy based quantitative bioassay on aptamer-functionalized nanopillars using large-area Raman mapping. ACS Nano 7, 5350 (2013)

    Article  Google Scholar 

  • J. Yao, A.P. Le, S.K. Gray, J.S. Moore, J.A. Rogers, R.G. Nuzzo, Functional nanostructured plasmonic materials. Adv. Mat. 22, 1102 (2010)

    Article  Google Scholar 

  • B.S. Yeo, J. Stadler, T. Schmid, R. Zenobi, W. Zhang, Tip-enhanced Raman spectroscopy—its status, challenges and future directions. Chem. Phys. Lett. 472, 1 (2009)

    Article  ADS  Google Scholar 

  • Q. Yu, P. Guan, D. Qin, G. Golden, P.M. Wallace, Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett. 8, 1923 (2008)

    Article  ADS  Google Scholar 

  • S. Yüksel, M. Ziegler, S. Goerke, U. Hübner, K. Pollok, F. Langenhorst, K. Weber, D. Cialla-May, J. Popp, Background-free bottom-up plasmonic arrays with increased sensitivity, specificity and shelf life for SERS detection schemes. J. Phys. Chem. C 119, 13791 (2015)

    Article  Google Scholar 

  • J. Zhang, L. Zhang, Nanostructures for surface plasmons. Adv. Opt. Photonics 4, 157 (2012)

    Article  Google Scholar 

  • X. Zhang, H. Chen, H. Zhang, Layer-by-layer assembly: from conventional to unconventional methods. Chem. Commun. 14, 1395 (2007)

    Article  Google Scholar 

  • J. Zhang, Y. Li, X. Zhang, B. Yang, Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Adv. Mater. 22, 4249 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Prochazka .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Prochazka, M. (2016). Basics of Surface-Enhanced Raman Scattering (SERS). In: Surface-Enhanced Raman Spectroscopy. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-23992-7_3

Download citation

Publish with us

Policies and ethics