Unconventional Solar Sailing

Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 44)


The idea of exploiting solar radiation pressure for space travel, or solar sailing, is more than a 100 years old, and yet most of the research thus far has considered only a limited number of sail configurations. However solar sails do not have to be inertially-pointing squares, spin-stabilised discs or heliogyros: there is a range of different configurations and concepts that present some advantageous features. This chapter will show and discuss three non-conventional solar sail configurations and their applications. In the first, the sail is complemented by an electric thruster, resulting in a hybrid-propulsion spacecraft which is capable to hover above the Earth’s Poles in a stationary position (pole-sitter). The second concept makes use of a variable-geometry pyramidal sail, naturally pointing towards the sun, to increase or decrease the orbit altitude without the need of propellant or attitude manoeuvres. Finally, the third concept shows that the orbit altitude can also be changed, without active manoeuvres or geometry change, if the sail naturally oscillates synchronously with the orbital motion. The main motivation behind these novel configurations is to overcome some of the engineering limitations of solar sailing; the resulting concepts pose some intriguing orbital and attitude dynamics problems, which will be discussed.


Semimajor Axis Solar Radiation Pressure Solar Sail Technology Readiness Level Tangential Acceleration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter summarises some of the work done in collaboration with many people, to whom the author is extremely thankful: Colin McInnes and Jeannette Heiligers for the hybrid propulsion (this research was funded by the European Research Council, as part of project 227571 VISIONSPACE); Patrick Harkness and Malcolm McRobb for the oscillating sail; Patrick Harkness, Leonard Felicetti and Malcolm McRobb for the quasi-rhombic pyramid.


  1. Baig, S., McInnes, C.R.: Artificial three-body equilibria for hybrid low-thrust propulsion. J. Guid. Control Dyn. 31 (6), 1644–1655 (2008). doi:10.2514/1.36125ADSCrossRefGoogle Scholar
  2. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA, New York (1999)CrossRefzbMATHGoogle Scholar
  3. Biddy, C., Svitek, T.: LightSail-1 solar sail design and qualification. In: 41st Aerospace Mechanisms Symposium. Jet Propulsion Laboratory, Pasadena (2012)Google Scholar
  4. Borggräfe, A.: Analysis of interplanetary solar sail trajectories with attitude dynamics. MSc, Rheinisch-Westfälische Technische Hochschule Aachen (2011)Google Scholar
  5. Ceriotti, M., McInnes, C.R.: Generation of optimal trajectories for Earth hybrid pole-sitters. J. Guid. Control Dyn. 34 (3), 847–859 (2011a). doi:10.2514/1.50935ADSCrossRefGoogle Scholar
  6. Ceriotti, M., McInnes, C.R.: Systems design of a hybrid sail pole-sitter. Adv. Space Res. 48 (11), 1754–1762 (2011b). doi:10.1016/j.asr.2011.02.010ADSCrossRefGoogle Scholar
  7. Ceriotti, M., Heiligers, J., McInnes, C.R.: Novel pole-sitter mission concepts for continuous polar remote sensing. In: SPIE Remote Sensing, Edinburgh (2012a). doi:10.1117/12.974604Google Scholar
  8. Ceriotti, M., Diedrich, B.L., McInnes, C.R.: Novel mission concepts for polar coverage: an overview of recent developments and possible future applications. Acta Astronaut. 80, 89–104 (2012b). doi:10.1016/j.actaastro.2012.04.043ADSCrossRefGoogle Scholar
  9. Ceriotti, M., Harkness, P.G., McRobb, M.: Variable-geometry solar sailing: the possibilities of the quasi-rhombic pyramid. In: Macdonald, M. (ed.) Advances in Solar Sailing, pp. 899–919. Springer, Berlin/Heidelberg (2014a)CrossRefGoogle Scholar
  10. Ceriotti, M., Harkness, P.G., McRobb, M.: Synchronized orbits and oscillations for free altitude control. J. Guid. Control Dyn. 37 (6), 2062–2066 (2014b). doi:10.2514/1.G000253ADSCrossRefGoogle Scholar
  11. Ceriotti, M., Heiligers, J., McInnes, C.R.: Trajectory and spacecraft design for a pole-sitter mission. J Spacecr. Rocket. 51 (1), 311–326 (2014c). doi:10.2514/1.A32477CrossRefGoogle Scholar
  12. Driver, J.M.: Analysis of an arctic polesitter. J Spacecr. Rocket. 17 (3), 263–269 (1980). doi:10.2514/3.57736CrossRefGoogle Scholar
  13. Felicetti, L., Ceriotti, M., Harkness, P.G.: Attitude stability and altitude control of a variable-geometry earth-orbiting solar sail. J. Guid. Control Dyn. (2016). doi: 10.2514/1.G001833Google Scholar
  14. Funase, R., Mori, O., Tsuda, Y., Shirasawa, Y., Saiki, T., Mimasu, Y., Kawaguchi, J.: Attitude control of IKAROS solar sail spacecraft and its flight results. In: 61st International Astronautical Congress (IAC 2010). International Astronautical Federation, Prague (2010)Google Scholar
  15. Funase, R., Shirasawa, Y., Mimasu, Y., Mori, O., Tsuda, Y., Saiki, T., Kawaguchi, J.: On-orbit verification of fuel-free attitude control system for spinning solar sail utilizing solar radiation pressure. Adv. Space Res. (Special issue Solar Sailing) 48 (11), 1740–1746 (2011). doi:10.1016/j.asr.2011.02.022Google Scholar
  16. Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Displaced geostationary orbit design using hybrid sail propulsion. J. Guid. Control Dyn. 34 (6), 1852–1866 (2011). doi:10.2514/1.53807ADSCrossRefGoogle Scholar
  17. Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Design of optimal Earth pole-sitter transfers using low-thrust propulsion. Acta Astronaut. 79, 253–268 (2012a). doi:10.1016/j.actaastro.2012.04.025ADSCrossRefGoogle Scholar
  18. Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Design of optimal transfers between North and South pole-sitter orbits. In: 22nd AAS/AIAA Space Flight Mechanics Meeting. Univelt, Inc., Charleston (2012b)Google Scholar
  19. Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C.: NanoSail-D: A solar sail demonstration mission. Acta Astronaut. 68 (5–6), 571–575 (2011). doi:10.1016/j.actaastro.2010.02.008ADSCrossRefGoogle Scholar
  20. Leipold, M., Götz, M.: Hybrid Photonic/Electric Propulsion. Kayser-Threde GmbH, Munich (2002)Google Scholar
  21. Macdonald, M., McInnes, C.R.: Analytical control laws for planet-centred solar sailing. J. Guid. Control Dyn. 28 (5), 1038–1048 (2005a). doi:10.2514/1.11400ADSCrossRefGoogle Scholar
  22. Macdonald, M., McInnes, C.R.: Realistic earth escape strategies for solar sailing. J. Guid. Control Dyn. 28 (2), 315–323(2005b). doi:10.2514/1.5165Google Scholar
  23. Macdonald, M., McInnes, C.R.: Solar sail mission applications and future advancement. In: 2nd International Symposium on Solar Sailing (ISSS 2010), New York (2010)Google Scholar
  24. McInnes, C.R.: Solar Sailing: Technology, Dynamics and Mission Applications. Springer, Berlin (1999)CrossRefGoogle Scholar
  25. Mengali, G., Quarta, A.A.: Near-optimal solar-sail orbit-raising from low Earth orbit. J. Spacecr. Rocket. 42 (5), 954–958 (2005). doi:10.2514/1.14184ADSCrossRefGoogle Scholar
  26. Mengali, G., Quarta, A.A.: Tradeoff performance of hybrid low-thrust propulsion system. J. Spacecr. Rocket. 44 (6), 1263–1270 (2007a). doi:10.2514/1.30298ADSCrossRefGoogle Scholar
  27. Mengali, G., Quarta, A.A.: Trajectory design with hybrid low-thrust propulsion system. J. Guid. Control Dyn. 30 (2), 419–426 (2007b). doi:10.2514/1.22433ADSCrossRefGoogle Scholar
  28. Nobari, N.A., Misra, A.K.: Attitude dynamics and control of satellites with fluid ring actuators. J. Guid. Control Dyn. 35 (6), 1855–1864 (2012). doi:10.2514/1.54599ADSCrossRefGoogle Scholar
  29. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd edn. AIAA, Reston (2009)zbMATHGoogle Scholar
  30. Simo, J., McInnes, C.R.: Displaced periodic orbits with low-thrust propulsion. In: 19th AAS/AIAA Space Flight Mechanics Meeting. American Astronautical Society, Savannah (2009)Google Scholar
  31. Stolbunov, V., Ceriotti, M., Colombo, C., McInnes, C.R.: Optimal law for inclination change in an atmosphere through solar sailing. J. Guid. Control Dyn. 36 (5), 1310–1323 (2013). doi:10.2514/1.59931ADSCrossRefGoogle Scholar
  32. Wie, B., Murphy, D.: Solar-sail attitude control design for a flight validation mission. J. Spacecr. Rocket. 44 (4), 809–821 (2007). doi:10.2514/1.22996ADSCrossRefGoogle Scholar
  33. Yamaguchi, T., Mimasu, Y., Tsuda, Y., Takeuchi, H., Yoshikawa, M.: Estimation of solar radiation pressure force for solar sail navigation. In: 61st International Astronautical Congress (IAC 2010). International Astronautical Federation, Prague (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations