Skip to main content

Unconventional Solar Sailing

  • Conference paper
  • First Online:
Astrodynamics Network AstroNet-II

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 44))

  • 1045 Accesses

Abstract

The idea of exploiting solar radiation pressure for space travel, or solar sailing, is more than a 100 years old, and yet most of the research thus far has considered only a limited number of sail configurations. However solar sails do not have to be inertially-pointing squares, spin-stabilised discs or heliogyros: there is a range of different configurations and concepts that present some advantageous features. This chapter will show and discuss three non-conventional solar sail configurations and their applications. In the first, the sail is complemented by an electric thruster, resulting in a hybrid-propulsion spacecraft which is capable to hover above the Earth’s Poles in a stationary position (pole-sitter). The second concept makes use of a variable-geometry pyramidal sail, naturally pointing towards the sun, to increase or decrease the orbit altitude without the need of propellant or attitude manoeuvres. Finally, the third concept shows that the orbit altitude can also be changed, without active manoeuvres or geometry change, if the sail naturally oscillates synchronously with the orbital motion. The main motivation behind these novel configurations is to overcome some of the engineering limitations of solar sailing; the resulting concepts pose some intriguing orbital and attitude dynamics problems, which will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baig, S., McInnes, C.R.: Artificial three-body equilibria for hybrid low-thrust propulsion. J. Guid. Control Dyn. 31 (6), 1644–1655 (2008). doi:10.2514/1.36125

    Article  ADS  Google Scholar 

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA, New York (1999)

    Book  MATH  Google Scholar 

  • Biddy, C., Svitek, T.: LightSail-1 solar sail design and qualification. In: 41st Aerospace Mechanisms Symposium. Jet Propulsion Laboratory, Pasadena (2012)

    Google Scholar 

  • Borggräfe, A.: Analysis of interplanetary solar sail trajectories with attitude dynamics. MSc, Rheinisch-Westfälische Technische Hochschule Aachen (2011)

    Google Scholar 

  • Ceriotti, M., McInnes, C.R.: Generation of optimal trajectories for Earth hybrid pole-sitters. J. Guid. Control Dyn. 34 (3), 847–859 (2011a). doi:10.2514/1.50935

    Article  ADS  Google Scholar 

  • Ceriotti, M., McInnes, C.R.: Systems design of a hybrid sail pole-sitter. Adv. Space Res. 48 (11), 1754–1762 (2011b). doi:10.1016/j.asr.2011.02.010

    Article  ADS  Google Scholar 

  • Ceriotti, M., Heiligers, J., McInnes, C.R.: Novel pole-sitter mission concepts for continuous polar remote sensing. In: SPIE Remote Sensing, Edinburgh (2012a). doi:10.1117/12.974604

    Google Scholar 

  • Ceriotti, M., Diedrich, B.L., McInnes, C.R.: Novel mission concepts for polar coverage: an overview of recent developments and possible future applications. Acta Astronaut. 80, 89–104 (2012b). doi:10.1016/j.actaastro.2012.04.043

    Article  ADS  Google Scholar 

  • Ceriotti, M., Harkness, P.G., McRobb, M.: Variable-geometry solar sailing: the possibilities of the quasi-rhombic pyramid. In: Macdonald, M. (ed.) Advances in Solar Sailing, pp. 899–919. Springer, Berlin/Heidelberg (2014a)

    Chapter  Google Scholar 

  • Ceriotti, M., Harkness, P.G., McRobb, M.: Synchronized orbits and oscillations for free altitude control. J. Guid. Control Dyn. 37 (6), 2062–2066 (2014b). doi:10.2514/1.G000253

    Article  ADS  Google Scholar 

  • Ceriotti, M., Heiligers, J., McInnes, C.R.: Trajectory and spacecraft design for a pole-sitter mission. J Spacecr. Rocket. 51 (1), 311–326 (2014c). doi:10.2514/1.A32477

    Article  Google Scholar 

  • Driver, J.M.: Analysis of an arctic polesitter. J Spacecr. Rocket. 17 (3), 263–269 (1980). doi:10.2514/3.57736

    Article  Google Scholar 

  • Felicetti, L., Ceriotti, M., Harkness, P.G.: Attitude stability and altitude control of a variable-geometry earth-orbiting solar sail. J. Guid. Control Dyn. (2016). doi: 10.2514/1.G001833

    Google Scholar 

  • Funase, R., Mori, O., Tsuda, Y., Shirasawa, Y., Saiki, T., Mimasu, Y., Kawaguchi, J.: Attitude control of IKAROS solar sail spacecraft and its flight results. In: 61st International Astronautical Congress (IAC 2010). International Astronautical Federation, Prague (2010)

    Google Scholar 

  • Funase, R., Shirasawa, Y., Mimasu, Y., Mori, O., Tsuda, Y., Saiki, T., Kawaguchi, J.: On-orbit verification of fuel-free attitude control system for spinning solar sail utilizing solar radiation pressure. Adv. Space Res. (Special issue Solar Sailing) 48 (11), 1740–1746 (2011). doi:10.1016/j.asr.2011.02.022

    Google Scholar 

  • Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Displaced geostationary orbit design using hybrid sail propulsion. J. Guid. Control Dyn. 34 (6), 1852–1866 (2011). doi:10.2514/1.53807

    Article  ADS  Google Scholar 

  • Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Design of optimal Earth pole-sitter transfers using low-thrust propulsion. Acta Astronaut. 79, 253–268 (2012a). doi:10.1016/j.actaastro.2012.04.025

    Article  ADS  Google Scholar 

  • Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Design of optimal transfers between North and South pole-sitter orbits. In: 22nd AAS/AIAA Space Flight Mechanics Meeting. Univelt, Inc., Charleston (2012b)

    Google Scholar 

  • Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C.: NanoSail-D: A solar sail demonstration mission. Acta Astronaut. 68 (5–6), 571–575 (2011). doi:10.1016/j.actaastro.2010.02.008

    Article  ADS  Google Scholar 

  • Leipold, M., Götz, M.: Hybrid Photonic/Electric Propulsion. Kayser-Threde GmbH, Munich (2002)

    Google Scholar 

  • Macdonald, M., McInnes, C.R.: Analytical control laws for planet-centred solar sailing. J. Guid. Control Dyn. 28 (5), 1038–1048 (2005a). doi:10.2514/1.11400

    Article  ADS  Google Scholar 

  • Macdonald, M., McInnes, C.R.: Realistic earth escape strategies for solar sailing. J. Guid. Control Dyn. 28 (2), 315–323(2005b). doi:10.2514/1.5165

    Google Scholar 

  • Macdonald, M., McInnes, C.R.: Solar sail mission applications and future advancement. In: 2nd International Symposium on Solar Sailing (ISSS 2010), New York (2010)

    Google Scholar 

  • McInnes, C.R.: Solar Sailing: Technology, Dynamics and Mission Applications. Springer, Berlin (1999)

    Book  Google Scholar 

  • Mengali, G., Quarta, A.A.: Near-optimal solar-sail orbit-raising from low Earth orbit. J. Spacecr. Rocket. 42 (5), 954–958 (2005). doi:10.2514/1.14184

    Article  ADS  Google Scholar 

  • Mengali, G., Quarta, A.A.: Tradeoff performance of hybrid low-thrust propulsion system. J. Spacecr. Rocket. 44 (6), 1263–1270 (2007a). doi:10.2514/1.30298

    Article  ADS  Google Scholar 

  • Mengali, G., Quarta, A.A.: Trajectory design with hybrid low-thrust propulsion system. J. Guid. Control Dyn. 30 (2), 419–426 (2007b). doi:10.2514/1.22433

    Article  ADS  Google Scholar 

  • Nobari, N.A., Misra, A.K.: Attitude dynamics and control of satellites with fluid ring actuators. J. Guid. Control Dyn. 35 (6), 1855–1864 (2012). doi:10.2514/1.54599

    Article  ADS  Google Scholar 

  • Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, 2nd edn. AIAA, Reston (2009)

    MATH  Google Scholar 

  • Simo, J., McInnes, C.R.: Displaced periodic orbits with low-thrust propulsion. In: 19th AAS/AIAA Space Flight Mechanics Meeting. American Astronautical Society, Savannah (2009)

    Google Scholar 

  • Stolbunov, V., Ceriotti, M., Colombo, C., McInnes, C.R.: Optimal law for inclination change in an atmosphere through solar sailing. J. Guid. Control Dyn. 36 (5), 1310–1323 (2013). doi:10.2514/1.59931

    Article  ADS  Google Scholar 

  • Wie, B., Murphy, D.: Solar-sail attitude control design for a flight validation mission. J. Spacecr. Rocket. 44 (4), 809–821 (2007). doi:10.2514/1.22996

    Article  ADS  Google Scholar 

  • Yamaguchi, T., Mimasu, Y., Tsuda, Y., Takeuchi, H., Yoshikawa, M.: Estimation of solar radiation pressure force for solar sail navigation. In: 61st International Astronautical Congress (IAC 2010). International Astronautical Federation, Prague (2010)

    Google Scholar 

Download references

Acknowledgements

This chapter summarises some of the work done in collaboration with many people, to whom the author is extremely thankful: Colin McInnes and Jeannette Heiligers for the hybrid propulsion (this research was funded by the European Research Council, as part of project 227571 VISIONSPACE); Patrick Harkness and Malcolm McRobb for the oscillating sail; Patrick Harkness, Leonard Felicetti and Malcolm McRobb for the quasi-rhombic pyramid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Ceriotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ceriotti, M. (2016). Unconventional Solar Sailing. In: GĂ³mez, G., Masdemont, J. (eds) Astrodynamics Network AstroNet-II. Astrophysics and Space Science Proceedings, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-23986-6_4

Download citation

Publish with us

Policies and ethics