An Efficient Sub-optimal Motion Planning Method for Attitude Manoeuvres

Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 44)


A motion planning technique for efficiently generating smooth spacecraft attitude slew manoeuvres is presented. The attitude trajectory (using quaternions) is shaped by a polynomial, determined by matching prescribed boundary conditions and the manoeuvre time. This method allows constraints such as limits on velocity, acceleration, jerk, and torque to be evaluated via inverse dynamics. Pointing constraints are also considered. A spin-to-spin case is presented whereby an axis-azimuth parameterisation is used. The problem of time minimization (within the set of trajectories defined by the given polynomials) is addressed, and a method for analytically estimating the minimum time of a manoeuvre is proposed. The method requires low computational capacity, and a comparison with optimal control solutions shows its relative performance.


Motion Planning Obstacle Avoidance Body Axis Inverse Dynamic Solar Sail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Biggs, J.D., Horri, N.: Optimal geometric motion planning for a spin-stabilized spacecraft. Syst. Control Lett. 4 (61), 609–616 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bonnamy, O., Bonneau, C., Ecale, E., Denis, M.: Mars express AOCS in-flight behaviour. In: Proceedings of the 6th International ESA Conference on Guidance, Navigation and Control Systems, vol. 33, pp. 17–20 (2006)Google Scholar
  3. Byers, R.M., Vadali, S.R., Junkins, J.L.: Near-minimum time, closed-loop slewing of flexible spacecraft. J. Guid. Control Dyn. (1990). doi: 10.2514/3.20517 Google Scholar
  4. Cheng, X., Cui, H., Cui, P., Xu, R.: Large angular autonomous attitude maneuver of deep spacecraft using pseudospectral method. In: 3rd International Symposium on Systems and Control in Aeronautics and Astronautics (2010). doi: 10.1109/ISSCAA.2010.5632498
  5. Froissart, C., Mechler, P.: On-line polynomial path planning in Cartesian space for robot manipulators. Robotica (1993). doi: 10.1017/S0263574700016118 Google Scholar
  6. Guan, Y., Yokoi, K., Stasse, O.: On robotic trajectory planning using polynomial interpolations. In: IEEE International Conference on Robotics and Biomimetic, pp. 111–116 (2005)Google Scholar
  7. Hou, H.H.H., Andrews, H.: Cubic splines for image interpolation and digital filtering. IEEE Trans. Acoust. Speech Signal Process. (1978). doi: 10.1109/TASSP.1978.1163154 zbMATHGoogle Scholar
  8. Kim, Y., Mesbahi, M., Singh, G., Hadaegh, F.Y.: On the constrained attitude control problem. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 10.2514/6.2004–5129 (2004)CrossRefGoogle Scholar
  9. Kim, J., Agrawal, B.N.: Experiments on jerk-limited slew maneuvers of a flexible spacecraft. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 1–20 (2006)Google Scholar
  10. Kjellberg, H.C., Lightsey, E.G.: A constrained attitude control module for small satellites. In: Proceedings of the AIAA/USU Conference on Small Satellites, Series SSC12-XII-1 (2014)Google Scholar
  11. LaValle, S.M.: Planning Algorithms, pp. 3–5. Cambridge University Press, Cambridge (2006)Google Scholar
  12. McInnes, C.R.: Satellite attitude slew manoeuvres using inverse control. Aeronaut. J. 102, 259–265 (1998)Google Scholar
  13. Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. (1993). doi: 10.2514/6.2012-4422 MathSciNetGoogle Scholar
  14. Singh, G., Kabamba, P.T., Mcclamrochj, N.H.: Bang-bang control of flexible spacecraft slewing maneuvers: guaranteed terminal pointing accuracy. J. Guid. Control Dyn. (1989). doi: 10.2514/3.56512 Google Scholar
  15. Skaar, S.B., Tang, L.: On-Off attitude control of flexible satellites. J. Guid. Control Dyn. (1986). doi: 10.2514/3.20140 Google Scholar
  16. Ventura, J., Romano, M., Walter, U.: Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation. Acta Astronaut. (2015). doi: 10.1016/j.actaastro.2014.11.041 Google Scholar
  17. Wie, B.: Space Vehicle Dynamics and Control, pp. 344–345, 2nd edn. AIAA, Washington (2008)Google Scholar
  18. Zhang, Y., Zhang, J.-R.: Combined control of fast attitude maneuver and stabilization for large complex spacecraft. Acta Mech. Sin. (2013). doi: 10.1007/s10409-013-0080-8 MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mechanical and Aerospace EngineeringUniversity of StrathclydeGlasgowUK
  2. 2.Aerospace Sciences and TechnologyPolitecnico di MilanoMilanoItaly

Personalised recommendations