Skip to main content

Low Thrust Relative Motion Control of Satellite Formations in Deep Space

  • Conference paper
  • First Online:
  • 1018 Accesses

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 44))

Abstract

The problem of placing and controlling a formation of satellites on a Halo orbit is studied. The Earth-Sun circular restricted three body problem is considered. A family of artificial Halo orbits with the same periods, around the L 1 and L 2 Lagrange points in the Earth-Sun system is found using the pseudo-arc-length continuation method. The orbits are used are reference trajectories for satellites to track. The problem of orbit stability, bounding and controlling the relative motion by means of nonlinear control is addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Biggs, J.D., McInnes, C.R.: An optimal gains matrix for time-delay feedback cntrol. In: 2nd IFAC Conference on the Analysis and Control of Chaotic Systems (2009)

    Google Scholar 

  • Biggs, J.D., McInnes, C.R.: Solar sail formation flying for deep space remote sensing. J. Spacecr. Rocket. 46, 670–678 (2009)

    Article  ADS  Google Scholar 

  • Biggs, J.D., McInnes, C.R., Waters, T.: Stabilizing periodic orbits above the Ecliptic plane in the solar sail 3-body problem. In: 59th International Astronautical Congress, vol. 8 (2008)

    Google Scholar 

  • Biggs, J.D., Waters, T.J., McInnes, C.R.: New periodic orbits in the solar sail three-body problem. In: Nonlinear Science and Complexity. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  • Blackman, P.F.: Extremum-Seeking Regulators. The Macmillan Company, New York (1962)

    Google Scholar 

  • Chen, G., Yu, X.: On time-delayed feedback control of chaotic systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46 (6), 767–772 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Chepfer, H., et al.: Estimation of cirrus cloud effective ice crystal shapes using visible reflectances from dual-satellite measurements. J. Geophys. Res. 107 (D23), AAC 21-1–AAC 21-16 (2002)

    Google Scholar 

  • Dhooge, A., Govaerts, W., Kuznetsov, Yu.A.: MATCONT: a Matlab package for numerical bifurcation analysis of ODEs. ACM SIGSAM Bull. 38 (1), 21–22 (2004)

    Article  MATH  Google Scholar 

  • Doedel, E.J., et al.: Elemental periodic orbits associated with the libration points in the circular restricted 3-body problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 17 (8), 2625 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global bifurcations of the Lorenz manifold. Nonlinearity 19 (12), 2947 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Gómez, G., Llibre, J., Martínez, R., Simó, C.: Dynamics and Mission Design Near Libration Points Vol. 1. Fundamentals: The Case of Collinear Libration Points. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  • Huber, M.C.E., Malinovsky-Arduini, M.: The SOHO concept and its realisation. Space Sci. Rev. 61, 301–334 (1992)

    Article  ADS  Google Scholar 

  • King, M., et al.: Remote sensing of tropospheric aerosols from space: past, present and future. Bull. Am. Meteorol. Soc. 80 (11), 2229–2259 (1999)

    Article  ADS  Google Scholar 

  • Poincaré, H.: Les Methodes Nouvelles de la Mecanique Celeste. Gauthier-Villars, Paris (1892)

    MATH  Google Scholar 

  • Prioroc, C.L., Biggs, J.D.: Low-thrust propulsion formation flying around libration points. Math. Eng. Sci. Aerosp. 6 (1), 87–100 (2015)

    Google Scholar 

  • Prioroc, C.L., Mikkola, S.: Simple algorithm for relative motion of satellites. N. Astron. Sci. Aerosp. 34 (1), 41–46 (2015)

    Google Scholar 

  • Pyragas, K.: Continuous control of chaos by self-controlling feed-back. Phys. Lett. A 170 (1), 421–428 (1992)

    Article  ADS  Google Scholar 

  • Slotine, J.J., Sastry, S.S.: Tracking control of nonlinear systems using sliding surfaces with applications to robot manipulator. Int. J. Control 38 (2), 465–492 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Szebehely, V.: Theory of Orbits. Academic, New York (1967)

    Google Scholar 

  • Watzin, J.: The Triana Mission - next generation systems architecture ready for flight. In: Proceedings of the Aerospace Conference, vol. 7, pp. 277–285 (2000)

    Google Scholar 

  • Young, K.D., Utkin, V.I., Ozguner, U.: A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol. 7 (3), 328–342 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

Claudiu Prioroc’s research has been funded by the European Commission through the Astrodynamics Network AstroNet-II, under Marie Curie contract PITN-GA-2011-289240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiu-Lucian Prioroc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Prioroc, CL., Mikkola, S. (2016). Low Thrust Relative Motion Control of Satellite Formations in Deep Space. In: Gómez, G., Masdemont, J. (eds) Astrodynamics Network AstroNet-II. Astrophysics and Space Science Proceedings, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-23986-6_17

Download citation

Publish with us

Policies and ethics