Formation Flying Guidance for Space Debris Observation, Manipulation and Capture

Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 44)


This article provides a brief overview of the space debris population, debris attitude dynamics, technologies for debris removal, followed by a more in-depth discussion of robotic arm based capture of debris. Guidance aspects of active debris removal missions are discussed. Mission phases for active debris removal missions are rendezvous, inspection, attitude synchronization and capture and de-tumbling. The need for attitude synchronization is driven by recent observations of Envisat which exhibits a fairly high rotation rate.


Reference Trajectory Space Debris Angular Velocity Vector Angular Momentum Vector Target Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Boehnhardt, H., Koehnhke, H., Seidel, A.: The acceleration and the deceleration of the tumbling period of Rocket Intercosmos 11 during the first two years after launch. Astrophys. Space Sci. 162 (2), 297–313 (1989)ADSCrossRefGoogle Scholar
  2. Carroll, J.A.: Space Transport Development Using Orbital Debris. Final Report on NIAC Phase I, Research Grant (07600-087) (2002)Google Scholar
  3. Committee on Space Debris: Orbital Debris: A Technical Assessment. National Academies Press, Washington (1995)Google Scholar
  4. D’Amico, S., Montenbruck, O.: Proximity operations of formation-flying spacecraft using an eccentricity/inclination vector separation. J. Guid. Control Dyn. 29 (3), pp. 554–563 (2006)ADSCrossRefGoogle Scholar
  5. Dimitrov, D.N., Kazuya, Y.: Momentum distribution in a space manipulator for facilitating the post-impact control. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004), vol. 4, pp. 3345–3350. IEEE, Sendai (2004)Google Scholar
  6. Isakowitz, S.J., Hopkins, J.B., Hopkins Jr., J.P.: International Reference Guide to Space Launch Systems, 3rd edn. AIAA, Washington (1999)Google Scholar
  7. Kaplan, M.H., Bradley Boone, B., Brown, R., Criss, T.B., Tunstel, E.W.: Engineering issues for all major modes of in situ space debris capture. In: AIAA SPACE 2010 Conference & Exposition, Anaheim, 30 August–2 September 2010Google Scholar
  8. Kucharski, D., Kirchner, G., Koidl, F., Fan, C., Carman, R., Moore, C., Feng, Q.: Attitude and spin period of space debris envisat measured by satellite laser ranging. IEEE Trans. Geosci. Remote Sens. 52 (12), 7651–7657 (2014). doi:10.1109/TGRS.2014.2316138.ADSCrossRefGoogle Scholar
  9. Levin, E., Pearson, J., Carroll, J.: Wholesale debris removal from LEO. Acta Astronaut. 73, 100–108 (2012)ADSCrossRefGoogle Scholar
  10. Liou, J.C.: A parametric study on using active debris removal for LEO environment remediation. In: 61st International Astronautical Congress, Prague, Paper IAC-10.A6.2.5 (2010)Google Scholar
  11. Ojakangas, G., Anz-Meador, P., Cowardin, H.: Probable rotation states of rocket bodies in low earth orbit. In: Proceedings of the 14th Advanced Maui Optical and Space Surveillance Technologies Conference, held in Wailea, Maui, 11–14 September 2012Google Scholar
  12. Peters, T.V., Olmos, D.D.E., Lavagna, M., Benvenuto, R., Attina, P., Parissenti, G., Cropp, A.: The COBRA IRIDES experiment. IAC-14-A6.6.9. In: Proceedings of the 65th International Astronautical Congress, Toronto (2014)Google Scholar
  13. Peterson, G.E.: Target identification and delta-V sizing for active debris removal and improved tracking campaigns. In: Proceedings of the 23rd International Symposium on Spaceflight Dynamics, Pasadena, Paper No. ISSFD23-CRSD2-5, 29 October–2 November 2012Google Scholar
  14. Praly, N., Petit, N., Bonnal, C., Laurent-Varin, J.: Study on the eddy current damping of the spin dynamics of spatial debris from the ariane launcher. In: 4th European Conference For Aerospace Sciences (2011)Google Scholar
  15. Santoni, F., Cordelli, E., Piergentili, F.: Determination of disposed-upper-stage attitude motion by ground-based optical observations. J. Spacecr. Rocket. 50 (3), 701–708 (2013). doi:10.2514/1.A32372.ADSCrossRefGoogle Scholar
  16. Smith, G.L.: A theoretical study of the torques induced by a magnetic field on rotating cylinders and spinning thin wall cones, cone frustrums, and general bodies of revolution, NASA. TR-R-129 (1962)Google Scholar
  17. Virgili, B., Lemmens, S., Krag, H.: Investigation on Envisat attitude motion. In: e.Deorbit Workshop (2014)Google Scholar
  18. Williams, V., Meadows, A.J.: Eddy current torques, air torques and the spin decay of cylindrical rocket bodies in orbit. Planet. Space Sci. 26, 721–726 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.GMV Spain, Calle de Isaac Newton 11MadridSpain

Personalised recommendations