Advertisement

A Note on Dynamics About the Coherent Sun–Earth–Moon Collinear Libration Points

Conference paper
  • 578 Downloads
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 44)

Abstract

Orbits about the Sun–Earth libration points are perturbed by the Moon, and orbits about the Earth–Moon libration points are perturbed by the Sun. We study both situations in the framework of a single, coherent model, the Hill restricted four-body problem. This model is presented in a Sun–Earth rotating reference frame to complement its earlier Earth–Moon frame formulation. We provide an overview of the planar quasi-periodic orbits that originate from the L1 and L2 Lyapunov periodic orbits in Hill’s problem and the circular restricted three-body problem. The role of resonances is also discussed.

Keywords

Periodic Orbit Libration Point Lyapunov Orbit Orbit Family Collinear Libration Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Marie Curie Initial Training Network PITN-GA-2011-289240, AstroNet-II.

References

  1. Andreu, M.A.: The quasi-bicircular problem. PhD thesis, Univ de Barcelona (1999)Google Scholar
  2. Gómez, G., Llibre, J., Martínez, R., Simó, C.: Dynamics and Mission Design Near Libration Points I: Fundamentals: The Case of Collinear Libration Points. World Scientific, Singapore (2001)zbMATHGoogle Scholar
  3. Gúzman, J.: Spacecraft trajectory design in the context of a coherent restricted four-body problem. PhD thesis, Purdue University (2001)Google Scholar
  4. Howell, K.C., Barden, B.T., Lo, M.W.: Application of dynamical systems theory to trajectory design for a libration point mission. J. Astronaut. Sci. 45 (2), 161–178 (1997)MathSciNetGoogle Scholar
  5. Jorba, À., Villanueva, J.: On the persistence of lower dimensional invariant tori under quasi-periodic perturbations. J. Nonlinear Sci. (1997). doi: 10.1007/s003329900036 MathSciNetzbMATHGoogle Scholar
  6. Mohn, L., Kevorkian, J.: Some limiting cases of the restricted four-body problem. Astron. J. 72 (8), 959–963 (1967)ADSCrossRefGoogle Scholar
  7. Scheeres, D.J.: The restricted Hill four-body problem with applications to the Earth–Moon–Sun system. Celest. Mech. Dyn. Astr. (1998). doi: 10.1023/a:1026498608950 MathSciNetzbMATHGoogle Scholar
  8. Simó, C., Gómez, G., Jorba, À., Masdemont, J.: The bicircular model near the triangular libration points of the RTBP. In: Roy, A.E., Steves, B.A. (eds.) From Newton to Chaos, pp. 343–370. Springer, New York (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut d’Estudis Espacials de Catalunya and Universitat de BarcelonaBarcelonaSpain
  2. 2.Institut d’Estudis Espacials de Catalunya and Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations