Advertisement

Analytical and Semianalytical Propagation of Space Orbits: The Role of Polar-Nodal Variables

Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 44)

Abstract

The role of different sets of variables in analytical or semianalytical solutions to the artificial satellite theory is reviewed. In particular, it is shown that using polar-nodal variables or non-singular variables based on them is clearly advantageous in the evaluation of the transformation from mean to osculating elements.

Keywords

Canonical Transformation Orbital Plane Kepler Problem Angular Momentum Vector Critical Inclination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Partial support from projects ESP2013-41634-P and ESP2014-57071-R of the Ministry of Economic Affairs and Competitiveness of Spain is recognized.

References

  1. Aksenov, Y.P., Grebenikov, Y.A., Demin, V.G.: General solution of the problem of the motion of an artificial satellite in the normal field of the earth’s attraction. Planet. Space Sci. 9 (8), 491–498 (1962)ADSCrossRefGoogle Scholar
  2. Aksnes, K.: A note on ‘The main problem of satellite theory for small eccentricities, by A. Deprit and A. Rom, 1970’. Celest. Mech. 4, 119–121 (1971)Google Scholar
  3. Aksnes, K.: On the use of the Hill variables in artificial satellite theory. Astron. Astrophys. 17, 70–75 (1972)ADSzbMATHGoogle Scholar
  4. Alfriend, K.T., Coffey, S.L.: Elimination of the perigee in the satellite problem. Celest. Mech. 32 (2), 163–172 (1984)ADSCrossRefzbMATHGoogle Scholar
  5. Armellin, R., San-Juan, J.F., Lara, M.: End-of-life disposal of high elliptical orbit missions: the case of INTEGRAL. Adv. Space Res. 56 (3), 479–493 (2015)ADSCrossRefGoogle Scholar
  6. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)CrossRefGoogle Scholar
  7. Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378–397 (1959)ADSMathSciNetCrossRefGoogle Scholar
  8. Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic, New York (1961)zbMATHGoogle Scholar
  9. Cid, R., Lahulla, J.F.: Perturbaciones de corto periodo en el movimiento de un satélite artificial en función de las variables de Hill. Publ. Rev. Acad. Cienc. Zaragoza 24, 159–165 (1969)Google Scholar
  10. Cid, R., Lahulla, J.F.: Perturbaciones de segundo orden y corto periodo, para el movimiento de un satélite artificial, en las variables de Hill. Publ. Rev. Acad. Cienc. Zaragoza 26 (2), 333–343 (1971)Google Scholar
  11. Cid, R., Ferrer, S., Sein-Echaluce, M.L.: On the radial intermediaries and the time transformation in satellite theory. Celest. Mech. 38 (2), 191–205 (1986)ADSCrossRefzbMATHGoogle Scholar
  12. Coffey, S., Deprit, A.: Third-order solution to the main problem in satellite theory. J. Guid. Control Dyn. 5 (4), 366–371 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. Coffey, S.L., Deprit, A., Miller, B.R.: The critical inclination in artificial satellite theory. Celest. Mech. 39 (4), 365–406 (1986)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. Danielson, D.A., Sagovac, C.P., Neta, B., Early, L.W.: Semianalytic Satellite Theory. Technical Report NPS-MA-95-002, Naval Postgraduate School, Monterey, CA. Dep of Math (1995)Google Scholar
  15. Delaunay, C.E.: La Théorie du Mouvement de la Lune, Premier volume. Mem. Acad. Sci. Inst. Imp. Fr., vol. 28. Mallet-Bachellier, Paris (1860)Google Scholar
  16. Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1 (1), 12–30 (1969)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. Deprit, A.: The elimination of the parallax in satellite theory. Celest. Mech. 24 (2), 111–153 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. Deprit, A., Ferrer, S.: Simplifications in the theory of artificial satellites. J. Astronaut. Sci. 37, 451–463 (1989)ADSMathSciNetGoogle Scholar
  19. Deprit, A., Rom, A.: The main problem of artificial satellite theory for small and moderate eccentricities. Celest. Mech. 2 (2), 166–206 (1970)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. Deprit, E., Deprit, A.: Poincaré’s méthode nouvelle by skew composition. Celest. Mech. Dyn. Astron. 74, 175–197 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. Ferrer, S., Lara, M.: Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. J. Geom. Mech. 2 (3), 223–241 (2010)MathSciNetzbMATHGoogle Scholar
  22. Garfinkel, B.: The orbit of a satellite of an oblate planet. Astron. J. 64 (9), 353–367 (1959)ADSMathSciNetCrossRefGoogle Scholar
  23. Garfinkel, B.: Formal solution in the problem of small divisors. Astron. J. 71, 657–669 (1966)ADSMathSciNetCrossRefGoogle Scholar
  24. Golikov, A.R.: THEONA—a numerical-analytical theory of motion of artificial satellites of celestial bodies. Cosm. Res. 50 (6), 449–458 (2012)ADSCrossRefGoogle Scholar
  25. Gurfil, P., Lara, M.: Satellite onboard orbit propagation using Deprit’s radial intermediary. Celest. Mech. Dyn. Astron. 120, 217–232 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. Henrard, J.: Virtual singularities in the artificial satellite theory. Celest. Mech. 10 (4), 437–449 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. Henrard, J., Wauthier, P.: A geometric approach to the ideal resonance problem. Celest. Mech. 44, 227–238 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. Hoots, F.R.: Reformulation of the Brouwer geopotential theory for improved computational efficiency. Celest. Mech. 24, 367–375 (1981)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. Hoots, F.R., Roehrich, R.L.: Models for Propagation of the NORAD Element Sets. Project SPACETRACK, Rep 3, US Air Force Aerosp Def Command, Colorado Springs, CO (1980)Google Scholar
  30. Hori, G.: Theory of general perturbation with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18 (4), 287–296 (1966)ADSGoogle Scholar
  31. Izsak, I.G.: A note on perturbation theory. Astron. J. 68, 559–561 (1963)ADSMathSciNetCrossRefGoogle Scholar
  32. Jupp, A.H.: A second-order solution of the ideal resonance problem by Lie series. Celest. Mech. 5, 8–26 (1972)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. Jupp, A.H.: The problem of the critical inclination revisited. Celest. Mech. 11 (3), 361–378 (1975)ADSCrossRefzbMATHGoogle Scholar
  34. Kaula, W.M.: Theory of Satellite Geodesy. Applications of Satellites to Geodesy. Blaisdell, Waltham (1966)zbMATHGoogle Scholar
  35. Kelso, T.J.: Analysis of the Iridium 33–Cosmos 2251 collision. In: Paper AAS 09-368, Am. Astronaut. Soc. (2009)Google Scholar
  36. Kinoshita, H.: Third-Order Solution of an Artificial-Satellite Theory. SAO Special Rep 379 (1977)Google Scholar
  37. Kislik, M.D.: The path of an artificial earth satellite in the normal gravitational field of the earth. Planet. Space Sci. 8, 86–96 (1961)ADSCrossRefGoogle Scholar
  38. Kozai, Y.: The motion of a close earth satellite. Astron. J. 64 (11), 367–377 (1959)ADSMathSciNetCrossRefGoogle Scholar
  39. Kozai, Y.: Second-order solution of artificial satellite theory without air drag. Astron. J. 67 (7), 446–461 (1962)ADSMathSciNetCrossRefGoogle Scholar
  40. Lara, M.: Efficient formulation of the periodic corrections in Brouwer’s gravity solution. Math. Probl. Eng. 2015, Article ID 980652 (2015a)MathSciNetCrossRefGoogle Scholar
  41. Lara, M.: On inclination resonances in artificial satellite theory. Acta Astronaut. 110, 239–246 (2015b)ADSCrossRefGoogle Scholar
  42. Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Averaging tesseral effects: closed form relegation versus expansions of elliptic motion. Math. Probl. Eng. 2013, Article ID 570127 (2013)MathSciNetGoogle Scholar
  43. Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Delaunay variables approach to the elimination of the perigee in artificial satellite theory. Celest. Mech. Dyn. Astron. 120, 39–56 (2014a)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Proper averaging via parallax elimination. Adv. Astronaut. Sci. 150, 315–331 (2014b)Google Scholar
  45. Lara, M., de Moraes, R.V., Sanchez, D.M., Prado, A.F.B.A.: Efficient computation of short-period analytical corrections due to third-body effects. Adv. Astronaut. Sci. 155, 437–455 (2015)Google Scholar
  46. Lyddane, R.H.: Small eccentricities or inclinations in the Brouwer theory of the artificial satellite. Astron. J. 68, 555–558 (1963)ADSMathSciNetCrossRefGoogle Scholar
  47. McClain, W.D.: A Recursively Formulated First-Order Semianalytic Artificial Satellite Theory Based on the Generalized Method of Averaging, Volume 1: The Generalized Method of Averaging Applied to the Artificial Satellite Problem, 2nd edn. NASA CR-156782. NASA, Greenbelt (1977)Google Scholar
  48. Mitropolsky, I.: Averaging method in non-linear mechanics. Int. J. Non Linear Mech. 2, 69–96 (1967)ADSMathSciNetCrossRefGoogle Scholar
  49. Osácar, C., Palacián, J.F.: Decomposition of functions for elliptical orbits. Celest. Mech. Dyn. Astron. 60, 207–223 (1994)ADSCrossRefzbMATHGoogle Scholar
  50. Poincaré, H.: Les methodes nouvelles de la mecanique celeste. Gauthier-Villars, Paris (1892)zbMATHGoogle Scholar
  51. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Springer, New York (2007)zbMATHGoogle Scholar
  52. Setty, S.J., Cefola, P.J., Montenbruck, O., Fiedler, H., Lara, M.: Investigating the suitability of analytical and semi-analytical satellite theories for space object catalogue maintenance in geosynchronous regime. Adv. Astronaut. Sci. 150, 1027–1042 (2014)Google Scholar
  53. Vallado, D.A., Crawford, P., Hujsak, R., Kelso, T.S.: Revisiting spacetrack report #3. In: Paper AIAA 2006-6753, Am. Inst. Aeronaut. Astronaut. (2006)Google Scholar
  54. Vinti, J.P.: New method of solution for unretarded satellite orbits. J. Res. Natl. Bur. Stand. 62B (2), 105–162 (1959)MathSciNetCrossRefGoogle Scholar
  55. von Zeipel, H.: Research on the motion of minor planets (recherches sur le mouvement des petites planètes). NASA Transl: NASA TT F-9445 (1965) (1916, 1917, 1918).Google Scholar
  56. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 1st edn. Cambridge University Press, Cambridge (1904)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.GRUCACI, University of La RiojaLogroñoSpain

Personalised recommendations