Skip to main content

Scalable Digital CMOS Architecture for Spike Based Supervised Learning

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 517))

Abstract

Supervised learning algorithm for Spiking Neural Networks (SNN) based on Remote Supervised Method (ReSuMe) uses spike timing dependent plasticity (STDP) to adjust the synaptic weights. In this work, we present an optimal network configuration amenable to digital CMOS implementation and show that just 5 bits of resolution for the synaptic weights is sufficient to achieve fast convergence. We estimate that the implementation of this optimal network architecture in \(65\,\)nm and a futuristic \(10\,\)nm digital CMOS could result in systems with close to 0.85 and 30 Million Synaptic Updates Per Second (MSUPS)/Watt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gerstner, W., et al.: Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press (2014)

    Google Scholar 

  2. Bean, B.P.: The action potential in mammalian central neurons. Nature Reviews Neuroscience 8(6), 451–465 (2007)

    Article  MathSciNet  Google Scholar 

  3. Gabbiani, F., Metzner, W.: Encoding and processing of sensory information in neuronal spike trains. Journal of Experimental Biology 202(10), 1267–1279 (1999)

    Google Scholar 

  4. Ponulak, F., Kasinski, A.: Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting. Neural Computation 22(2), 467–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bora, A., Rao, A., Rajendran, B.: Mimicking the worman adaptive spiking neural circuit for contour tracking inspired by c. elegans thermotaxis. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 2079–2086. IEEE (2014)

    Google Scholar 

  6. Kasinski, A., Ponulak, F.: Experimental demonstration of learning properties of a new supervised learning method for the spiking neural networks. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 145–152. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Gehlhaar, J.: Neuromorphic processing: a new frontier in scaling computer architecture. ACM SIGPLAN Notices 49(4), 317–318 (2014)

    Google Scholar 

  8. Merolla, P., et al.: A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm. In: 2011 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4. IEEE (2011)

    Google Scholar 

  9. Rajendran, B., et al.: Specifications of nanoscale devices and circuits for neuromorphic computational systems. IEEE Transactions on Electron Devices 60(1), 246–253 (2013)

    Article  Google Scholar 

  10. Hebb, D.O.: The organization of behavior: A neuropsychological theory. Psychology Press (2005)

    Google Scholar 

  11. Bi, G.Q., Poo, M.M.: Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience 24(1), 139–166 (2001)

    Article  Google Scholar 

  12. Lee, C.M., et al.: Heterosynaptic plasticity induced by intracellular tetanization in layer 2/3 pyramidal neurons in rat auditory cortex. The Journal of Physiology 590(10), 2253–2271 (2012)

    Article  Google Scholar 

  13. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  14. Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)

    Article  Google Scholar 

  15. Kraft, M., Kasinski, A., Ponulak, F.: Design of the spiking neuron having learning capabilities based on fpga circuits. Discrete-Event System Design 3, 301–306 (2006)

    Google Scholar 

  16. Seo, J., et al.: A 45nm cmos neuromorphic chip with a scalable architecture for learning in networks of spiking neurons. In: 2011 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4. IEEE (2011)

    Google Scholar 

  17. Gupta, S., et al.: Deep learning with limited numerical precision (2015). arXiv preprint arXiv:1502.02551

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipin Rajendran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kulkarni, S.R., Rajendran, B. (2015). Scalable Digital CMOS Architecture for Spike Based Supervised Learning. In: Iliadis, L., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2015. Communications in Computer and Information Science, vol 517. Springer, Cham. https://doi.org/10.1007/978-3-319-23983-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23983-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23981-1

  • Online ISBN: 978-3-319-23983-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics