Skip to main content

Self-Train LogitBoost for Semi-supervised Learning

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 517))

Abstract

Semi-supervised classification methods are based on the use of unlabeled data in combination with a smaller set of labeled examples, in order to increase the classification rate compared with the supervised methods, in which the total training is executed only by the usage of labeled data. In this work, a self-train Logitboost algorithm is presented. The self-train process improves the results by using the accurate class probabilities for which the Logitboost regression tree model is more confident at the unlabeled instances. We performed a comparison with other well-known semi-supervised classification methods on standard benchmark datasets and the presented technique had better accuracy in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object detection models. In: 7th IEEE Workshop on Applications of Computer Vision, pp. 29–36 (2005)

    Google Scholar 

  2. Friedhelm, S., Edmondo, T.: Pattern classification and clustering: A review of partially supervised learning approaches. Pattern Recognition Letters 37, 4–14 (2014)

    Article  Google Scholar 

  3. Zhou, Z.-H., Li, M.: Tri-Training: Exploiting Unlabeled Data Using Three Classifiers. IEEE Trans. on Knowledge and Data Engg. 17(11), 1529–1541 (2005)

    Article  Google Scholar 

  4. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  5. Wang, S., Wu, L., Jiao, L., Liu, H.: Improve the performance of co-training by committee with refinement of class probability estimations. Neurocomputing 136, 30–40 (2014)

    Article  Google Scholar 

  6. Xu, J., He, H., Man, H.: DCPE co-training for classification. Neurocomputing 86, 75–85 (2012)

    Article  Google Scholar 

  7. Li, M., Zhou, Z.: Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybernet, 1088–1098 (2007)

    Google Scholar 

  8. Hady, M., Schwenker, F.: Co-training by committee: a new semi-supervised learning framework. In: Proceedings of the IEEE International Conference on Data Mining Workshops, pp. 563–572 (2008)

    Google Scholar 

  9. Zhou, Y., Goldman, S.: Democratic co-learning. In: Ictai, 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004), pp. 594–202 (2004)

    Google Scholar 

  10. Sun, S., Jin, F.: Robust co-training. Int. J. Pattern Recognit. Artif. Intell. 25, 1113–1126 (2011)

    Article  MathSciNet  Google Scholar 

  11. Sun, S.: A survey of multi-view machine learning. Neural Computing and Applications 23(7–8), 2031–2038 (2013)

    Article  Google Scholar 

  12. Deng, C., Guo, M.Z.: A new co-training-style random forest for computer aided diagnosis. Journal of Intelligent Information Systems 36, 253–281 (2011)

    Article  Google Scholar 

  13. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Statist. 28(2), 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Torgo, L.: Inductive learning of tree-based regression models. AI Communications 13(2), 137–138 (2000)

    Google Scholar 

  15. Jiang, Z., Zhang, S., Zeng, J.: A hybrid generative/discriminative method for semi-supervised classification. Knowledge-Based Systems 37, 137–145 (2013)

    Article  Google Scholar 

  16. Didaci, L., Fumera, G., Roli, F.: Analysis of co-training algorithm with very small training sets. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 719–726. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Guo, T., Li, G.: Improved tri-training with unlabeled data. In: Wu, Y. (ed.) Software Engineering and Knowledge Engineering: Vol. 2. AISC, vol. 115, pp. 139–148. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Zhang, M.-L., Zhou, Z.-H.: CoTrade: Confident co-training with data editing. IEEE Trans. Syst. Man Cybernet, Part B: Cybernetics 41(6), 1612–1626 (2011)

    Article  Google Scholar 

  19. Sun, S., Zhang, Q.: Multiple-View Multiple-Learner Semi-Supervised Learning. Neural Process. Lett. 34, 229–240 (2011)

    Article  Google Scholar 

  20. Du, J., Ling, C.X., Zhou, Z.-H.: When. does cotraining work in real data? IEEE Trans. on Knowledge and Data Engg. 23(5), 788–799 (2011)

    Article  Google Scholar 

  21. Zhu, X., Goldberg, A.: Introduction to semi-supervised learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool (2009)

    Google Scholar 

  22. Liu, C., Yuen, P.C.: A boosted co-training algorithm for human action recognition. IEEE Trans. on Circuits and Systems for Video Technology 21(9), 1203–1213 (2011). 5739520

    Article  Google Scholar 

  23. Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework. Journal of Multiple-Valued Logic and Soft Computing 17(2–3), 255–287 (2011)

    Google Scholar 

  24. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  25. Triguero, I., Garca, S., Herrera, F.: Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowledge and Information Systems 42(2), 245–284 (2015)

    Article  Google Scholar 

  26. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sciences 180(10), 2044–2064 (2010)

    Article  Google Scholar 

  27. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation 13(3), 637–649 (2001)

    Article  MATH  Google Scholar 

  28. Mease, D., Wyner, A.J., Buja, A.: Boosted classification trees and class probability/quantile estimation. J. Mach. Learn. Res. 8, 409–439 (2007)

    MATH  Google Scholar 

  29. Provost, F.J., Domingos, P.: Tree induction for probability based ranking. Mach. Learn. 52, 199–215 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stamatis Karlos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Karlos, S., Fazakis, N., Kotsiantis, S., Sgarbas, K. (2015). Self-Train LogitBoost for Semi-supervised Learning. In: Iliadis, L., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2015. Communications in Computer and Information Science, vol 517. Springer, Cham. https://doi.org/10.1007/978-3-319-23983-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23983-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23981-1

  • Online ISBN: 978-3-319-23983-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics