Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 443 Accesses

Abstract

Stable isotope separation has an interesting history that blossomed largely due to efforts during World War II at Oak Ridge National Laboratory where machines called calutrons were used for enriching uranium isotopes for the Manhattan Project. Calutrons enriched isotopes by first producing ions, then separating the ions based on their charge-to-mass ratios. Due to their general principle of operation, the calutrons were adapted after the war toward the enrichment of isotopes of other elements, ultimately enabling many novel applications. Despite their remarkable productivity over a 50-year period, the U.S. decommissioned the last of its calutrons in 1998 due to their massive energy consumption. In this chapter, we give an overview of the history and applications of stable isotope separation, particularly focusing on the calutron program in the U.S. We then outline the general principles for MAGIS and define criteria for convincingly demonstrating its viability as a replacement for the calutron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The website for the National Isotope Development Center includes limited documentation on news related to stable isotope separation in the United States. See http://www.isotopes.gov/news/hot.html.

  2. 2.

    Vanadium and tantalum each have just two stable isotopes with one of the isotopes being less than 1 % abundant.

References

  1. National Isotope Development Center. Office of Nuclear Physics of the U.S. Department of Energy. http://www.isotopes.gov

  2. Trace Sciences International. http://www.tracesciences.com

  3. E.A. Symons, Lithium isotope separation: a review of possible techniques. Separ. Sci. Technol. 20, 633 (1985)

    Article  Google Scholar 

  4. Wired Magazine. Uranium is so last century – enter thorium, the New Green Nuke. http://www.wired.com/2009/12/ff_new_nukes

  5. World Nuclear Association. Molten salt reactors. http://www.world-nuclear.org/info/Current-and-Future-Generation/Molten-Salt-Reactors

  6. ITER Organization. Fusion fuels. https://www.iter.org/sci/fusionfuels

  7. R. Khatchadourian, A star in a bottle. The New Yorker. http://www.newyorker.com/magazine/2014/03/03/a-star-in-a-bottle (2014)

  8. D.P. Jackson, W.N. Selander, B.M. Townes, T.C. Leung et al., A review of fusion breeder blanket technology. Canada Fusion Cells Technology Project (Report No. CFFTP-G-84033) (1985)

    Google Scholar 

  9. Managing Critical Isotopes: DOE’s Isotope Program Needs Better Planning for Setting Prices and Managing Production Risks. United States Government Accountability Office (http://www.gao.gov/products/GAO-12-591) (2011)

  10. Isotopes for the Nation’s Future: A long range plan. Nuclear Science Advisory Committee. http://science.energy.gov/~/media/np/nsac/pdf/docs/nsaci_ii_report.pdf (2009).

  11. J.H. Hinderer, Radioisotopic impurities in promethium-147 produced at the ORNL high flux isotope reactor. Masters Thesis, University of Tennessee (2010)

    Google Scholar 

  12. J.E. Lawler, M.G Raizen, Enhanced escape rate for Hg 254 nm resonance radiation in fluorescent lamps. J. Phys. D Appl. Phys. 46(41), 415204 (2013)

    Google Scholar 

  13. L. Greenemeier, Want clean water? Turn on the lights. Scientific American http://http://www.scientificamerican.com/article/clean-water-technology (2009)

    Google Scholar 

  14. M.J. Rivard, L.M. Bobek, R.A. Butler, M.A. Garland et al., The US national isotope program: current status and strategy for future success. Appl. Radiat. Isotopes 63(2), 157 (2005)

    Google Scholar 

  15. World Nuclear Association. Radioisotopes in medicine. http://www.world-nuclear.org/info/Non-Power-Nuclear-Applications/Radioisotopes/Radioisotopes-in-Medicine

  16. M.L. Wald, Radioactive drug for tests is in short supply. The New York Times http://www.nytimes.com/2009/07/24/science/24isotope.html?_r=0 (2009)

  17. T.J. Ruth, The medical isotope shortage. APS Physics Forum on Physics & Society. http://www.aps.org/units/fps/newsletters/200910/ruth.cfm (2009)

  18. R. Van Noorden, Radioisotopes: the medical testing crisis. Nature 504(7479), 202 (2013)

    Google Scholar 

  19. A. Al-Nahhas, Z. Win, T. Szyszko, A. Singh et al., Gallium-68 pet: a new frontier in receptor cancer imaging. Anticancer Res. 27, 4087 (2007)

    Google Scholar 

  20. J.P. Norenberg, The impact of the Ge-68/Ga-68 on molecular imaging. Mol. Imaging (Winter 2013)

    Google Scholar 

  21. J.M. Connett, C.J. Anderson, L.W. Guo, S.W. Schwarz et al., Radioimmunotherapy with a64Cu-labeled monoclonal antibody: a comparison with67Cu. Proc. Natl. Acad. Sci. 93(13), 6814 (1996)

    Google Scholar 

  22. S.M. Bilenky, C. Giunti, Neutrinoless double-beta decay: a brief review. Mod. Phys. Lett. A 27(13), 1230015 (2012)

    Google Scholar 

  23. V. Lozza, Neutrinoless double beta decay search with SNO+. EPJ Web Conf. 65, 01003 (2014)

    Article  Google Scholar 

  24. B. Andreas, Y. Azuma, G. Bartl, P. Becker et al., Counting the atoms in a28Si crystal for a new kilogram definition. Metrologia 48, S1 (2011)

    Article  ADS  Google Scholar 

  25. B. Andreas, Y. Azuma, G. Bartl, P. Becker et al., Determination of the avogadro constant by counting the atoms in a28Si crystal. Phys. Rev. Lett. 106, 030801 (2011)

    Article  ADS  Google Scholar 

  26. E. Lawrence, M. Livingston, The production of high speed light ions without the use of high voltages. Phys. Rev. 40, 19 (1932)

    Article  ADS  Google Scholar 

  27. A.L. Yergey, A.K. Yergey, Preparative scale mass spectrometry: a brief history of the calutron. J. Am. Soc. Mass Spectrom. 8(9), 943 (1997)

    Google Scholar 

  28. L.O. Love, Electromagnetic separation of isotopes at Oak Ridge: an informal account of history, techniques, and accomplishments. Science 182, 343 (1973)

    Article  ADS  Google Scholar 

  29. E. Newman, The stable isotope enrichment program at Oak Ridge National Laboratory, in Separated Isotopes: Vital Tools for Science and Medicine (National Academy Press, Washington, DC, 1982)

    Google Scholar 

  30. W.A. Bell, J.G. Tracy, Stable isotope separation in calutrons: forty years of production and distribution. Oak Ridge National Laboratory (ORNL/TM-10356) (1987)

    Google Scholar 

  31. D. Brown, S. Harrison, Production techniques of stable metal isotopes: current status and future trends, in Isotope Production and Applications in the 21st Century (World Scientific, Singapore, 2000)

    Google Scholar 

  32. J.W. Terry, Alternative isotope enrichment processes. Oak Ridge National Laboratory (CONF–8309127–1) (1983)

    Google Scholar 

  33. J. Norenberg, P. Staples, R. Atcher, R. Tribble et al., Workshop on the nation’s need for isotopes: present and future. U.S. Department of Energy (DOE/SC–0107) (2008)

    Google Scholar 

  34. J.A. Paisner, Atomic vapor laser isotope separation. Appl. Phys. B: Photophys. Laser Chem. 46, 253 (1988)

    Article  ADS  Google Scholar 

  35. J. Dawson, H. Kim, D. Arnush, B. Fried et al., Isotope separation in plasmas by use of ion cyclotron resonance. Phys. Rev. Lett. 37, 1547 (1976)

    Article  ADS  Google Scholar 

  36. M.G. Raizen, B. Klappauf, Magnetically activated and guided isotope separation. New J. Phys. 14, 023059 (2012)

    Article  ADS  Google Scholar 

  37. A. Kastler, Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique. J. Phys. Radium 11, 255 (1950)

    Google Scholar 

  38. Z. Xiwen, H. Guilong, M. Ganghua, Y. Delin, Laser isotope enrichment of lithium by magnetic deflection of a polarized atomic beam. J. Phys. B At. Mol. Opt. Phys. 25, 3307 (1992)

    Article  ADS  Google Scholar 

  39. W. van Wijngaarden, J. Li, Laser isotope separation of barium using an inhomogeneous magnetic field. Phys. Rev. A 49, 1158 (1994)

    Article  ADS  Google Scholar 

  40. H.R. Noh, J.O. Kim, D.S. Nam, W. Jhe, Isotope separation in a magneto-optical trap. Rev. Sci. Instrum. 67, 1431 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mazur, T.R. (2016). Introduction. In: Magnetically Activated and Guided Isotope Separation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-23956-9_1

Download citation

Publish with us

Policies and ethics